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1 Introduction

SRI International (SRI) has carried out a three-year project to develop spoken-
language understanding technology for interactive problem solving, featuring real-
time performance, large vocabulary, high semantic accuracy, habitability, and robust-
ness. This technology has been developed using an Air Travel Information System
(ATIS) as a prototype application. We have developed technology that enables a
user to retrieve airline schedules, fares, and related information by means of spoken
natural-language queries. We have evaluated this technology in four ATIS benchmark
evaluations, and we have incorporated it into a demonstration system, which we have
also used for data collection.

This final report consists of a summary of the research and other activities car-
ried out under the project, followed by an Appendix containing 26 technical papers
describing work performed on the project. The report covers work on speech recogni-
tion, natural-language understanding, speech and natural-language integration, data
collection and analysis, performance evaluation, demonstration systems, and related
activities.

2 Speech Recognition

SRI's continuous speech, speaker-independent DECIPHER?® speech recognizer is based
on tied-mixture hidden Markov models. It uses six cepstra- and energy-based features
generated from a filterbank computed via fast Fourier transforms and high-pass filter-
ing in the log-spectral-energy domain. Pronunciation variability is modeled through
probabilistically pruned linguistic rules. Cross-word acoustic and phonological mod-
els are used. Recognizers trained separately on male and female speech are run in
parallel, and a backed-off bigram language model is used to reduce perplexity.

SRI’s speech recognition effort over the course of the project has involved several
tasks: improving speech recognition accuracy, improving speech recognition speed,
improving speech recognition robustness, and improving speech recognition portabil-
ity. Each of these tasks is described briefly below.

2.1 Improving Speech Recognition Accuracy

We have investigated several lines of research that have led to improvements in speech
recognition accuracy. Increasing the amount of training usually leads to improved
performance, both by providing more training of existing models and by allowing for
robust estimation of more detailed models with more parameters. Other techniques

* All product names and trademarks used in this document are the properties of their respective
owners.




that have led to improvements include corrective training algorithms, separate model-
ing of male and female speakers, implementation of tied-mixture ( “semi-continuous”)
hidden Markov models, algorithms for combining and differentially weighting differ-
ent sources of training data for bigram and class language models, and an improved
back-off estimation algorithm (Cohen et al., 1990; Murveit, Weintraub, and Cohen,
1990; Murveit, Butzberger, and Weintraub, 1991; Butzberger et al., 1992; Murveit,
Butzberger, and Weintraub, 1$92a).

2.2 Improving Speech Recognition Speed

We have achieved significant speed gains in our recognition training algorithms by
implementing server-client protocols for hidden-Markov-model training distributed
over several macliines; these improvements reduced training times by an order of
magnitude. In addition, through software engineering, we have achieved high-specr
static grammar compilation for higher-order N-gram language models. The new
techniques implemented have reduced the size of the grammars, which means that
the DECIPHER system runs more quickly and requires less memory. In addition, we
have implemented fast-search recognition algorithms for near-real-time recognition of
iarge vocabularies. Finally, we have recoded our front-end to achieve computation
speeds about twice faster than real time.

2.3 Improving Speech Recognition Robustness

Our analysis of errors in benchmark tests revealed that much of the discrepancy
between ARPA Resource Management task results and ATIS task results was re-
lated to spontaneous speech phenomena not observed in the Resource Management
data. Therefore, much of our effort on this project has been focused on modeling
these spontaneous speech phenomena, including more appropriate word modeling
and better models of breath noise and pause fillers (Butzberger et al., 1992; Murveit,
Butzberger, and Weintraub, 1992a). Modeling of verbal repairs is reviewed later in
Section 4.2 under the topic of integration, since it involves both speech and natural
language.

We have also improved DECIPHER’s robustness to time-invariant or slow-moving
linear channel effects by implementing RASTA filtering (high-pass filtering in the
log spectral domain) to improve channel robustness. We have demonstrated the
effectiveness of this type of filtering in a set of experiments involving speech passed
through a digital filter, two radically different microphones, and digit recognition over
the telephone (Murveit, Butzberger, and Weintraub, 1992b).
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2.4 Improving Speech Recognition Portability

We have explored several aspects of the issue of portability, including porting to new
vocabularies, to new langnage models, and to new platforms. We have tested these
components by porting the ATIS system to the new, 46-city ATIS database. and,
in a coordinated internally funded effort, porting to an online version of the system
connected to the Official Airline Guide Electronic Edition.

We began work in the area of portability by developing mechanisms for the auto-
matic generation of baseforms, applications of rules and the creation of word-models
based on existing training data from other domains. We have also developed tech-
niques for porting more easily to new vocabularies by modeling morphophonological
correspondences.

Since different tasks and platforms may require different language models, we have
written several software tools to manipulate and convert grammars of different formats
nto a single format for use by the recognition system. A variety of grammars (e.g.,
back-off N-gram, word-pair, all-word, and finite-state) are supported in the recognizer
in a uniform and consistent framework. The mechanism allows for searching parallel
recognition paths that contain separate male and female acoustic-phonetic models; it
also supports dynamic grammars and N-best search algorithms.

Since porting to different platforms can require changes in the allowable system
size, we have explored clustering techniques that allow larger tasks to fit on a smaller
machine, and also allow for more detailed models without computational explosion.
Since porting to many applications will not allow for additional hardware, we have
implemented a system (in conjunction with support from other related projects) that
needs only a SUN workstation and an analog-to-digital converter, with no digital-
signal-processing board required.

3 Natural-Language Understanding

Under this project, SRI's research on natural-language understanding for spoken-
language systems has proceeded along two lines. The shorter-term line of research
has focused on the Template Matcher, a module that constructs database queries by
searching the user input for key words and phrases characteristic of the most common
query types for a given task, ignoring parts of the input that it does not understand.
This approach is robust to many kinds of nonstandard use of language, standard
language that is simply unanticipated, and speech recognition errors in noncritical
parts of the utterance. It is limited, however, in its ability to extract information
that depends on structural relationships among words and phrases. A longer-term
effort is focused on more sophisticated syntactic and semantic analysis of the input,
using a unification-grammar-based natural-language processing system called Gemini,
This system is capable of analyzing more complex semantic relationships than the




Template Matcher, but is more fragile, by itself, to unanticipated variation in query
phrasing. These two approaches to natural-language understanding are described
below, along with our current and planned methods for integrating them.

3.1 The Template Matcher

The Template Matcher (Jackson et al., 1991) operates by filling templates from infor-
mation it finds in the input utterance. Templates represent skeletal database queries
for common types of requests in a particular database query task. For the ATIS
task, the topics for which query templates have been defined include flights, fares,
ground transportation, the meanings of codes and headings, aircraft, cities, airlines,
and airports. Each template has a set of key words and phrases that tend to signal
the corresponding type of query and a set of slots that the Template Matcher fills
using words and phrases found in the input. For example, for the flight template, the
keywords include flight, fly, and go, and the word from followed by an airport or city
name will cause the “origin” slot to be filled with that name.

For each template, a score is computed that is roughly the percentage of words in
the sentence that contribute in some way to matching or filling the template. If the
utterance fails to contain any of {he keywords that normally signal the template, this
basic score is reduced by a factor that varies from template to template. For each
input utterance, the Template Matcher tries to fill each kind of template, and the
one with the best score is used to construct the database query, provided its score
is greater than a certain “cut-off” parameter. The selected filled template is then
translated into a database query.

3.2 Gemini

Gemini (Dowding et al., 1993a, 1993b) is a parsing and semantic interpretation system
based on unification grammar. This means that grammatical categories incorporate
features that can be assigned values, and when grammatical category expressions are
matched in the course of parsing or semantic interpretation, these feature assignments
are unified; that is, the resulting category expression is the most general expression
consistent with all the feature constraints of the expressions being matched.
Processing starts in Gemini when syntactic, semantic, and lexical rules are applied
by a bottom-up all-paths “constituent” parser to populate a chart with edges contain-
ing syntactic, semantic, and logical form information. Then, a second “utterance”
parser is used to apply a second set of syntactic and semantic rules that are required
to span the entire utterance. If no semantically acceptable utterance-spanning edges
are found during this phase, a component to recognize and correct verbal repairs is
applied. When an acceptable interpretation is found, a set of parse preferences is
used to choose a single best interpretation from the chart to be used for subsequent




processing. Quantifier scoping rules are applied to this best interpretation to pro-
duce a scoped logical form. This logical form is operated on by a set of task-specific
rules that map it into a simplified logical form that closely matches the schema of
the database. Finally, a module similar to that used to process the output of the
Template Matcher translates simplified logical forms into database queries.

In a fair test on the class A aud D utterances in the November 1992 ATIS bench-
mark test set, Gemini was able to find a complete syntactic analysis for 93.1 percent
of the utterances and a complete semantic analysis for 86.0 percent of the utterances.

3.3 Integration of the Template Matcher and Gemini

The fact that Gemini attempts a more complete analysis of an utterance than the
Template Matcher does suggests that the Template Matcher will succeed more often
than Gemini in finding sonie interpretation for an utterance, but that when Gemini
does find an interpretation, it is more likely to be correct than the Template Matcher.
Our experiments with ATIS training data have in fact demonstrated this to be the
case. To get the benefits of both approaches, the ATIS system we currently use in
benchmark evaluations incorporates both Gemini and the Template Matcher, by first
attempting to construct a complete analysis of a query using Gemini, and falling back
on the Template Matcher if that fails. That way Gemini gets a chance to give an exact
analysis of the input before the Template Matcher attempts an approximate one. The
approach proved successful in the November 1992 ATIS NL benchmark test (Pallet
et al., 1993), where a system based on the Template Matcher alone had a weighted
error of 27.6 percent, while the combination of Gemini with the Template Matcher
had a weighted error of only 23.6 percent. The difference was even greater for the
“class A” (context-independent) subset of queries, where the system incorporating
Germini had a weighted error of only 14.8 percent, compared to 22.2 percent for the
Template Matcher alone.

Under the follow-on project, we intend to undertake a more thorough integration
of template matching techniques directly into Gemini. To achieve this integration,
we will modify the Gemini utterance-level parser to allow it to skip words in the
input and assign a corresponding score to the analysis. Since the utterance gram-
mar in Gemini already incorporates rules for semantically combining a sequence of
fragments, we expect this will largely subsume the functionality of the Template
Matcher with minimal changes to Gemini. Moreover, the performance of the system
should be increased, since the general phrase types that can be combined in this way
should cover cases that are not covered by the more specific patterns the Template
Matcher currently relies on. The Gemini constituent parser (Moore and Dowding,
1991) has been designed in anticipation of this type of processing, incorporating a
novel algorithm that finds all complete grammatical phrases bottom up while using
limited prediction from context to control creation of spuriously hypothesized phrases




containing unlicensed syntactic gaps.

4 Speech and Natural-Language Integration

Work on integration of speech and language processing under this project has focused
on two problems introduced by spontaneous speech that are not present in analysis
of fluent textual natural language: (1) coping with errors in the transcription of the
speech caused by imperfect recognition, and (2) coping with disfluencies present even
in a perfect transcription caused by speakers’ verbal repairs in spontanecus speech.
Our results in these areas are discussed below.

4.1 Dealing with Recognition Errors

Our research has addressed the problem of understanding natural language containing
recognition errors in two ways. For the near term, we have taken advantage of the
robustness of the Template Matcher to accommodate recognition errors. Since the
Template Matcher can ignore much of the input utterance, recognition errors in these
noncritical parts of the utterance typically do not create errors in understanding.
The effect of this robustness to recognition errors can be seen in the November 1992
ATIS benchmark tests (Pallet et al., 1993). In the speech recognition test, SRI's
DECIPHER recognizer had a sentence error rate of 33.8 percent for the answerable
queries, but in the spoken language system (SLS) test, SRI's ATIS system failed to
return the correct answer from the database for only 21.6 percent of these utterances.
Viewed this way, the (nonweighted) understanding error rate was only 64 percent of
the recognition error rate.

Despite this robustness to recognition error, SRI's SLS ATIS system still had a 41
percent higher error rate than the same natural-language understanding system did
when tested with error-free transcriptions of utterances. Thus wc have also pursued a
longer-term line of research to try to use constraints from natural language to reduce
the rate of rccognition errors with the goal of improving the overall rate of correct
understanding.

In experiments reported in 1990 (Murveit and Moore, 1990), we demonstrated
the use of a natural-language grammar to reduce the rate of speech recognition errors
in the ARPA Resource Management task. In these experiments we were abie to
reduce the recognition word error rate by 26 percent by including constraints from
a natural-language grammar, for sentences falling within the grammar. The base
recognition system was a speaker-dependent version of SRI's DECIPHER recognizer
using no grammar (perplexity 1000); the natural-language grammar was a syntactic
grammar covering 91 percent of the Resource Management corpus; and the test set
consisted of 279 sentences covered by the grammar out of 300 sentences divided evenly
among three speakers. The integration architecture used was the dynamic grammar
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network approach (Moore, Pereira, and Murveit, 1989), in which the natural-language
parser incrementa‘ly generates a grammar-state-transition network that limits the
word sequen.~ .aypotheses considered by the recognizer to those permitted by the
grammar.

Wihile these experiments were a success, the fact that the possible recognition
hy potheses were restricted to those word sequences permitted by the grammar turned
out to be a serious limitation. When we turned to the problem of recognizing and
understanding spontaneous speech in the ATIS task (in contrast to the read, carefully
formed sentences of the Resource Management task), it became apparent that there
was very little prospect of writing a grammar that would cover all, or nearly all. of
what people would actually say spontaneously to a spoken-language system. A more
robust method for applying natural-language constraints in recognition was clearly
required. Under this project, we have begun exploring the use of the Gemini system
to guide the recognizer to favor more semantically meaningful recognition hypotheses
in a way that maintains robustness by making use of information provided by Gemiui
even when the system fails to obtain a complete semantic analysis.

Our new approach is based on the obscrvation that, even when the grammar fails
to find a complete analysis of an utterance, it is usually able to find a small number of
phrases that span the utterance. This suggests using the natural-language grammar to
compute a language model score for a word sequence hypothesis based on the minimal
number of grammatical phrases needed to span the hypothesis. The language model
score can be computed as the number of phrases times a parameter optimized to
maximize overall performance. The overall scoring formula for recognition hypotheses
is then

S =R+ aG,

where R is the score produced by the recognizer (which can incorporate an N-gram
statistical language model), G is the grammar score (the minimal number of gram-
matical phrases needed to span the hypothesis), and « is the parameter to scale the
grammar score appropriately to combine with the recognition score. This parame-
ter can be looked on as a “phrase-transition weight” parallel to the “word-transition
weight” often used in recognizers to minimize insertion errors.

We have carried out an initial experiment using this model, and the result appears
very encouraging. To simplify running this experiment, we used an /N-best integration
of DECIPHER with SRI's Gemini natural-language processing system. For 100 ATIS
training sentences, DECIPHER produced an ordered list of the 20 best-scoring word
string hypotheses, using both acoustic models and a bigram language model. Where
the top 20 word string hypotheses did not contain the reference string, we added
it at the bottom of the list. (This was done to overcome the limitation of the N-
best approach that N may have to be very large to avoid pruning errors. Other
architectures that we are exploring do not suffer from this problem.) We then scored
each hypothesis by the smallest number of phrases needed to cover the hypothesis,
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using Gemini's syntactic and semantic rules.

When we compared the scores produced by Gemini for the 1-best hypothesis and
for the reference string, we found that in 53 cases Gemini gave them the same score
(in 27 of these cases the 1-best hypothesis was the reference string), in 44 Gemini
gave the reference string a higher score, and in only three cases did Gemini rank
an incorrect 1-best hypothesis higher than the reference string. So, in the cases
where applying natural-language constraints made a difference, Gemini was almost
15 times more likely to prefer the reference string over an incorrect 1-best hypothesis.
Next we looked at what would happen to recognition accuracy if we combined the
DECIPHER recognition score with the Gemini language score as we have proposed.
We discovered that, for this limited experiment, optimal results were obtained by
letting the Gemini score completely dominate the recognition score. That is, optimal
results were obtained by limiting consideration to the set of hypotheses given the
best score by Gemini, and selecting the hypothesis scored best by DECIPHER from
among those. (This would surely not have been the case if significantly more than 20
or 21 hypotheses per utterance had been used.) By doing this, we were able to reduce
the total number of recognition errors for the test set from 148 to 116, a reduction of
22 percent, compared with using the DECIPHER recognizer alone.

In comparing these results to our eatlier experiments with dynamic grammar
networks, it is important to realize that in those experiments we artificially restricted
the test set to utterances whose reference transcription could be completely analyzed
by the grammar. In the more recent experiments, we made no such restriction, and
25 percent of the test set consisted of utterances for which Gemini could not provide
complete analyses at the time the test was performed. So we were, in fact, able to
demonstrate the robustness to limitations of the grammar that we were seeking.

4.2 Detecting and Correcting Verbal Repairs

During the past two years, we have investigated the problem of correcting repairs in
spontaneous speech. In this type of grammatical disfluency, the speaker intends that
the correct interpretation of his or her utterance be gotten by ignoring one or more
words or word fragments.

How many American airline flights leave Denver on June June tenth.

Can you give me information on all the flights from San Fr- no from
Pittsburgh to San Francisco on Monday.

In this effort, we have developed a notation for describing and annotating repairs
(Bear et al., 1993). We have analyzed the repairs occurring in a 10,000 utterance
training set of ATIS data, and have developed preliminary methods to recognize and
correct repairs combining string matching, acoustic, and natural-language information

sources (Bear, Dowding, and Shriberg, 1992; Shriberg, Bear, and Dowding, 1992). In

8




addition, we have incorporated a component based on those methods into the Gemini
system {Dowding ct al., 1993a, 1993b).

The mechanism used in Gemini to detect and correct repairs is currently applied
as a fallback if no semantically acceptable interpretation is found for the complete
utterance. The mechanism finds sequenccs of identical or related words, possibly
separated by a cue word (for example, oh or no) that might indicate the presence of
a repair, and deletes the first occurrence of the matching portion. Since there may be
several such sequences of possible repairs in the utterance, the mechanism produces
a ranked set of candidate corrected utterances. These candidates are ranked in order
of the fewest deleted words. The first candidate that can be given an interpretation
is accepted as the intended meaning of the utterance.

The repair correction component currently used in Gemini does not make use of
acoustic/prosodic information, but it is clear that acoustics can contribute meaningful
cues to repair. In future work, we hope to improve the performance of our repair cor-
rection component by incorporating acoustic/prosodic techniques for repair detection
developed at SRI (Bear, Dowding, and Shriberg, 1992; Shriberg, Bear, and Dowding,
1992) and elsewhere (Nakatani and Hirschberg, 1993; O’Shaughnessy, 1992).

While it is true that repairs occur relatively rarely in our training data (only three
percent of utterances, when simple word fragments are excluded), their rate of occur-
rence can be expected to increase as speakers become more comfortable talking with
a computer. Rates of repair for human-human communication have been reported as
high as 34 percent (Levelt '983) for descriptions of visual patterns.

5 Data Collection and Analysis

Early in the project SRI produced a functional equivalent of the data-collection en-
vironment for the ATIS task developed by Texas Instruments (TI), and used it to
collect and process data from 10 subjects using the TI protocols. We found in ex-
periments based on variations in this system that more constrained scenarios should
be used, that familiarization sessions should be used, and that subjects can adapt to
small vocabularies (which has important implications for scaling the technologies to
various platforms) (Bly et al., 1990).

Through our participation in the MADCOW mulii-site ATIS data collection ef-
fort (MADCOW, 1992; Hirschman et al., 1993), we have collected training and test
data (speech, transcriptions, and logfiles) using SRI's ATIS system, including over
100 speakers, cver 200 scenarios, and over 3000 utterances for the 11-city version of
the ATIS relational database. We have also collected over 5300 utterances in the new
46-city version of the ATIS database. In addition, we have collected data from 16
speakers (32 scenarios, 508 utterances) using two systems: SRI’s DECIPHER recog-
nizer hooked up to MIT’s TINA NL, and the standard SRI data collection system.




Each speaker solved one scenario using each system, so that user behavior and satis-
faction could be compared.

We have carrie | out extensive analyses of human-machire problem solving using
the SRI ATIS system. We have analyzed user satisfaction au« system performance as
a function of system errors, user experience, and instructions to users, and expiored
trade-offs of speed vs. accuracy (Shriberg, Wade, and Price, 1992). Qur work has
shown evidence that, in the face of system word error rates above about 20 percent,
users will tend to adapt their speech style {as well as their language) to reduce the
error rate (Wade, Shriberg, and Price, 1992).

6 Performance Evaluation

SRI has participated in every ARPA spoken-language benchmark evaluation con-
ducted during the course of the project. Our progress in natural-language under-
standing, spoken-language understanding, and speech recognition as measured by the
ATIS benchmark tests is presented in Table 1. The “NL” results measure natural-
language understanding performance in terms of the response error for retrieving the
correct answer from the ATIS database, given a correct word-level transcription of
the subject’s utterance. The “SLS” results measure spoken-language understanding
performance starting from the acoustic signal. Both of these are measured in terms
of weighted utterance error percentage, according to which a wrong answer is counted
as twice as bad as not answering at all. The “SPREC” results measure speech recog-
nition performance in terms of word error percentage. “Class A” refers to the subset
of utterances that were judged to be answerable queries whose interpretation did not
depend on the context of utterance. “Class A+D” refers to all answerable queries,
whether or not context is required for their interpretation. “Class A4+D+X" refers
to all utterances, whether or not they constitute answerable queries. As can be seen
from the table, our pe.formance has steadily improved on all measures over the course
of the project.

This project also supported the early stages of SRI's work on the ARPA CSR
large-vocabulary speech recognition task. In the first benchmark evaluation on that
task, we achieved a 16.6 percent word error rate in the verbalized punctuation test
and a 17.1 percent word error rate in the non-verbalized-punctuation test (standard
bigram .anguage model, speaker-independent, closed 5000-word vocabulary).

In addition to evaluating systems in the benchmark tests, SRI has played a leading
role in defining and supporting technology evaluation within the ARPA community. It
was SRI that proposed and promoted the ATIS task as a common task for evaluation
of spoken-language understanding systems. Patti Price’s role in the MADCOW effort
has had a major impact on the functioning of the benchmark evaluations. In addition,
she has directed efforts in assessing our current benchmarks and searching for new
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Test performed June 90 | Feb 91 | Feb 92 | Nov 92
NL class A 77.8 31.0 22.9 14.8
NL class A+D 31.1 23.6
SLS class A 41.4 32.1 26.5
SLS class A+D 454 33.2
SPREC class A 18.0 7.3 5.2
SPREC class A+D 8.4 5.7
SPREC class A+D+X 11.0 9.1

Table 1: SRI error rates in ATIS benchmark tests.

evaluation procedures, developing with MIT a method for end-to-end evaluation that
takes into account the whole interaction (Price et al., 1992). Robert Moore has played
a major role on the Corpora and Performance Evaluation Committee (CPEC—the
predecessor of MADCOW) and the Principles of Interpretation Committee. He also
chaired the original ATIS query classification working group and the ATIS relational
database working group. In the latter capacity he redesigned the ATIS relational
database schema, and supervised other SRI staff in revising the 11-city ATIS database
to conform to the new schema. He also developed the minimal/maximal scoring
criterion for controlling the inclusion of irrelevant information in database answers.
Finally, George Doddington chaired the CSR corpus committee, supported in part by

this project, until he took a leave o absence from SRI to become program manager
at ARPA.

7 Demonstration Systems

SRI has been a leader in demonstrating spoken-language understanding technology,
and has achieved several firsts in this area. We believe that SRI was the first site to
develop and demonstrate an ATIS SLS system; this system had a 350-word vocabulary
and was a near-real-time, speaker-dependent system, using a grammar of perplexity
15-90, depending on how close the sentences used were to the 2900 sentence training
set. We also developed a graphical user interface for this system, which was first
demonstrated in August of 1990. Later we developed a new, X-based interface to
the SLS ATIS system, which allowed demonstrations to be given from any machine
running X-windows.

Our next step in demonstration system development was to improve accuracy for
speaker-independent recognition while maintaining the real-time speed requirement.
We believe that we were the first to use our SLS for data collection with no wizard
in the loop (May 1991). Our next step was to make the system portable, which
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we achieved through algorithm improvement (reduction in size requirements). We
implemented this system on a laptop Sun workstation, and believe we were the first
to demonstrate our SLS off-site, at Carnegie Mellon University in October 1991.

We made further improvements in the user interface of our ATIS system, includ-
ing better paraphrasing of system’s understanding, easier to read displays, better
handling of system error messages, and simpler control of context mechanism. In
addition, we added visual interest by including digitized graphics and improved user
friendliness by including a tape-recorder like interface to allow the user to move
through background material. This interface was integrated with 2 other demonstra-
tions (telephone banking and Wall Street Journal dictation) and delivered to ARPA.
This last effort was coordinated with the Real-Time Hardware project and internal
funding.

8 Related Activities

In addition to the work in support of performance evaluation described in Section 6,
SRI has played a major role, with support from this project, in committee and other
work ancillary to the administration of the ARPA Spoken Language Program:

e Patti Price, Robert Moore, and George Doddington have served on the Spoken
Language Coordinating Committee.

e Patti Price has served on the Standing Committee for planning ARPA Speech
and Natural Language (now Human Language Technology) workshops, includ-
ing chairing this committee from February, 1992, through March, 1993, and
developing a set of documented procedures and guidelines for this series of
workshops in the form of a “constitution” for the workshops.

e Patti Price has served on numerous workshop planning committees, including
those for June 1990, February 1991 (which she chaired), February 1992, and
March 1993.

In connection with these activities, the project has supported the participation of
SRI staff in the following ARPA-related administrative meetings:

o Patti Price attended an ATIS development meeting at Texas Instruments in
Dallas, Texas, just before the 1990 ICASSP meeting. In addition, she attended
the ARPA workshop planning meeting in Washington, DC.

e Patti Price attended an Spoken Language Coordinating Committee meeting in
July 1990 in Boston, Massachusetts.

e Patti Price and Robert Moore hosted the Spoken Language Coordinating Com-
mittee meeting November 1990.
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SRI hosted the Fourth ARPA Workshop on Speech and Natural Language,
Asilomar Conference Center, 19-22 February 1991, followed by an open-house
with demonstrations of SRI’s technology. Patti Price chaired the workshop and
edited the proceedings.

Robert Moore hosted an Spoken Language Coordinating Committee meeting
immediately following the Asilomar Workshop.

Robert Moore represented SRI at the CPEC meeting in Cambridge, Mas-
sachusetts, in March 1991 and was joined by Patti Price at the Spoken Language
Coordinating Committee meeting 19-20 March 1991.

Robert Moore and Patti Price attended the Spoken Language Coordinating
Committee held at AT&T Bell Laboratories, Murray Hill, New Jersey, in July
1991.

Doug Appelt, Robert Moore, Hy Murveit, and Patti Price attended the Spoken

Language Coordinating Committee meeting in Pittsburgh, Pennsylvania, in
October 1991.

Robert Moore, Hy Murveit, and George Doddington attended the Spoken Lan-
guage Coordinating Committee meeting at the National Institute of Standards
and Technology, Gaithersburg, Maryland, in March, 1992.

Robert Moore and George Doddington attended the Spoken Language Coordi-
nating Committee meeting in August 1992, at BBN Systems and Technologies,
Cambridge, Massachusetts.

Patti Price attended and chaired a meeting of the Standing Committee on
ARPA workshops in Speech and Natural Language, 10 September 1992 at SAIC
in Washington, DC.

This project has also supported the participation of SRI staff members in many

important technical and professional meetings:

o ARPA-sponsored Speech and Natural Language Workshops in June 1990, Febru-

ary 1991, and February 1992, the ARPA Spoken Language Technology Work-
shop in January 1993, and the ARPA Human Language Technology Workshop
in March 1993 were all attended by several SRI participants under support of
this project. The papers presented at these workshops reporting work on the
project are listed in the References section of this report.

Jared Bernstein, Michael Cohen, Hy Murveit, Patti Price and Mitch Weintraub
attended the 1990 International Conference on Acoustics, Speech, and Signal
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Processing in Albuquerque, New Mexico. partially supported by this project.
Two papers reporting work on the project, by Murveit and Moore (1990) and
Cohen et al. (1990), were presented.

Robert Moore and John Bear attended the 28th Annual Meeting of the Associ-
ation for Computational Linguistics in Pittsburgh, Pennsylvania, in June 1990.
John Bear presented a paper at this meeting based on joint work with Patti
Price that was partially supported by this project (Bear and Price, 1990).

A paper was prepared, supported by this project, for presentation at the Kobe
ICSLP in November 1990, describing SRI's SLS integration and development
(Price et al., 1990).

John Butzberger attended the International Conference on Acoustics, Speech,
and Signal Processing in Toronto, Canada, in May 1991.

Robert Moore and John Dowding attended the 29th Annual Meeting of the
Association for Computational Linguistics in Berkeley, California, in June 1991.

Patti Price attended the International Congress of Phonetic Sciences in Aix-en-
Provence in August 1991. She also made several laboratory visits: University of
Eindhoven/Phillips Research Center (a laboratory focused on intonation anal-
ysis), Cap Gemini R and D in Paris {(a group responsible for system integration
and multilanguage porting in the SUNDIAL project of the European ESPRIT
program), and CNET-Lannion (a group doing extensive recognition applica-
tions, and responsible for dialogue evaluation).

Hy Murveit attended the IEEE workshop on Speech Recognition at Arden House
in December 1991. Dr. Murveit brought a demonstration of SRI’s ATIS spoken-
language system to Arden House, and spoke in a panel session on Spoken Lan-
guage Systems describing SRI’s efforts and the overall ARPA Spoken Language
Program.

Patti Price served on the Technical Committee for an NSF workshop on Spoken-
Language Understanding in February 1992, at which she led a working group
on spoken-language understanding,.

Mark Gawron attended the Second Conference on Semantics and Linguistic
Theory in Columbus, Ohio, in May 1992, and presented a paper on compara-
tives.

John Bear and John Dowding attended the 30th Annual Meeting of the Associ-
ation for Computational Linguistics in June 1992 at the University of Delaware.
They presented a paper, co-authored with Elizabeth Shriberg, on verbal repairs.
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o Patti Price attended and delivered an invited talk at a workshop on “Inte-
grating Speech and Natural Language,” sponsored by the European Network
of Excellence in Language and Speech (ELSNLET) and the European Speech
Communication Association (ESCA), held in Dublin, July 15-17, 1992.
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SRI INTERNATIONAL RESULTS
FEBRUARY 1992 ATIS BENCHMARK TEST

Douglas E. Appelt, Eric Jackson

SRI International
Menlo Park, CA 94025

ABSTRACT

We describe the results that SRI International achieved on
the February 1992 ATIS Speech and Natural Language Sys-
tem Test. The basic architecture of the system is described,
including a set of parameters capable of altering the system’s
behavior and processing strategy. We report on several ex-
periments that were run on the February test set to evaluate
several processing strategies for both natural-language only
and full spoken-language system tests.

1. INTRODUCTION

This paper reports on the results of ruuning SRI In-
ternational’s spoken-language system on the DARPA-
sponsored February 1992 test. The system’s natural-
language processing has been parameterized in several
ways to achieve different behaviors. In addition to run-
ning our system with what we believed at the time of the
test to be the optimal parameter settings to produce our
official results, we have conducted some experiments by
ruening the system with a variety of parameter settings.
The results of these experiments shed some light on the
trade-offs among various SLS and natural-language pro-
cessing strategies, and provide some interesting data for
evaluating the evaluation methodology itself.

2. SYSTEM DESCRIPTION

The SLS system used for the February evaluation is an
integration of the SRI DECIPHER speech recognition
[1,4,5] system with the SRI TRAVELOGUE natural-
language processing system. The integration between
these two systems is currently accomplished by a sim-
ple serial interface: the best accoustic hypothesis is pro-
cessed by the NL system to produce the answer to the

query.

The DECIPHER System

DECIPHER is a speaker-independent continuous-speech
speech recognition system based on tied-mixture Hid-
den Markov Model (HMM) models. It uses six features,
three being vectors (cepstra, delta-cepstra, and delta-
delta-cepstra) and three scalars (energy, delta-energy,
and delta-delta-energy). These features are computed
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from a filter bank that is derived via an FFT and high-
pass filtered (RASTA filtered) in the log-spectrai-energy
domain. DECIPHER models pronunciation variability
through word networks generated by linguistic rules then
pruned probabilistically. There are cross-word acoustic
and phonological models. Parallel recognizers were im-
plemented and trained separately on male and female
speech. The DECIPHER-ATIS system uses a backed-off
bigram language model to reduce the perplexity of the
input speech.

The acoustic models were trained on all available ATIS
spontaneous and read data (excluding 809 sentences used
for system development that include 362 October 1991
dry run sentences and 447 MADCOW sentences). The
backed-off bigram language model was trained on the
available ATIS spontaneous speech data. This included
14,779 sentences (approximately 150,000 words). The
recognition lexicon consisted of all words spoken in all
available spontaneous ATIS data. There are aiso lexi-
cal entries for breaths and silence. No catch-all rejection
model was used for out-of-vocabulary items. The vocab-
ulary size is 1385 words.

The TRAVELOGUE System

The TRAVELOGUE system consists of a template-
matching sentence-analysis mechanism {3] coupled with
a context-handling mechanism and a database query
generation component.

The template matcher operates by producing templates
from the input sentence which then get translated into
database queries. The two main components of a tem-
plate are the template type, which generally corresponds
to a relation in the underlying database, and a set of
filled slots, which represent constraints present in the
query. A template for the sentence “Show me the non-
stop flights from Boston” might be of the type “flight”
and have an origin slot filled with “Boston” and a stops
slot filled with “0.” In addition to these components,
a template contains an illocutionary force marker (e.g.,
“show,” “how many,” “yes/no”), and a list of explicitly
requested fields from the relation associated with the




template type. There are 20 different template types
and 110 distinct slots.

The template matcher determines the type of template
by looking for certain key nouns or key phrases in the
sentence. It incorporates a simple noun phrase grammar
that allows it to identify phrases containing key nouns.
The presence of a key noun in certain contexts (e.g., in a
noun phrase preceded by a word like “show”) will more
strongly trigger the associated template type than an
isolated occurrence of that key noun. Conjunctions of
noun phrases containing key nouns produce templates
with multiple template types.

Slots are filled by matching regular-expression patterns
against the input string. For example, “from” followed
by an airport or city name may fill the origin slot of
the flight template. To find fillers for slots, the template
matcher makes use of a lexicon of names and codes, each
associated with the appropriate sort, and special gram-
mars for recognizing numbers, dates, and times. For
each template type with some key noun or key phrase
present in the sentence, the system tries to find the best
“slot. covering” of the sentence it can. That is, it tries to
find the sequence of slot-filling patterns that matches the
sentence and consumes as many words as possible. Two
constraints are (1) slot filling phrases may not overlap,
and {2) no slot may be filled twice with different val-
ues. The system incorporates a schematic mapping of
the domain, which contains the information as to how
entities are related, and allows the system to determine
what slots are possible for each template.

In the next stage, the system chooses a single template
from the set of candidate templates that have been con-
structed. It chooses on the basis of several factors, in-
cluding the type of key that triggered the template and
the number of words consumed in filling slots. A tem-
plate score is then computed for the chosen template,
reflecting the proportion of words in the sentence that
are considered to be consumed. Words that fill slots
or help slots get filled count, as well as function words
and certain other words (such as “please”) that are ig-
nored for the purposes of scoring. If the template does
not score above a threshold, the system chooses not to
risk answering the query. The threshold can be varied
depending on how much risk of a wrong answer can be
tolerated. For evaluation we have found a threshold of
about 0.85 to be optimal, while for data collection we
use a lower threshold, typically 0.5.

The template matcher incorporates special mechanisms
to handle certain types of false starts and complex con-
junctions. These phenomena cannot be handled well in
a straightforward, unaugmented, template-matching ap-

A-4

proach.

The template matcher was developed on all the anno-
tated MADCOW data available as of January 1, 1992.
In addition, a 3,000-sentence subset of the MADCOW
data was annotated with the correct template for each
utterance. The template production of the system could
be quickly evaluated on these sentences. As of January
1992, the system’s performance on this corpus was above

90%.

When a template is produced, the context-handling
mechanism of TRAVELOGUE is invoked to determine
whether the template for the current sentence should be
modified or expanded based on the current state of the
dialogue. The system employs a variety of context han-
dling rules, each of which is justified by a plan-based
model of dialogue structure similar to that of Grosz and
Sidner {2]. The basic model tracks the context of a di-
alogue by assuming the user is following a plan that in-
volves knowing which database entities satisfy a set of
constraints that he or she has in mind when the session
commences, because the user has the goal of formulat-
ing a travel plan (as opposed to other purposes for which
such a database would be useful).

The context mechanism inherits constraints expressed
by previous queries in a scenario as long as accumulating
these constraints is consistent with knowing a single set
of constraints applicable to a single travel plan. Knowing
whether this set of constraints is consistent with the over-
all plan is accomplished by comparing the new slots to a
context priority-lattice that establishes a partial order of
dependencies among various template slots. Changes in
higher-level constraints cause lower-level constraints to
be discarded. This general mechanism is suppiemented
with a mechanism for handling deictic references and
references to particular database entities that have ap-
peared in answers to previous questions.

When a template including contextually inherited slots is
produced, the TRAVELOGUE produces, optimizes, and
runs a PROLOG database query, generating the final
answer.

3. OFFICIAL RESULTS

In the February 1992 DARPA ATIS benchmark tests,
SRI achieved the following results: In the ATIS speech
recognition evaluation, SRI achieved a word recogni-
tion error rate of 11.0% and a sentence recognition er-
ror rate of 48.7% over all sentences on the test corpus.
In the ATIS natural-language-only test, SRI achieved a
weighted error rate of 31.1%, with 533 queries answered
correctly, 60 incorrectly, and 94 given no answer. In the
ATIS spoken-language systems evaluation, SRI achieved




a weighted error rate of 45.4%, with 444 queries answered
correctly, 69 incorrectly, and 174 queries given no an-
swer.

We performed an error analysis on the NL-only evalu-
ation results. We examined all the queries that we did
not answer or for which we were scored wrong, and tried
to ascertain the cause.

Of the sentences that were either incorrect or unan-
swered, 46% can be attributed to the failure of the
template matcher to generate a correct template. Of
these failures, 80% could be remedied within the current
framework while 20% would require a substantially dif-
ferent approach, such as a parser and grammar that to-
gether could provide more structural information about
a sentence. We estimate that 12% of the errors were
due to the database query generation component, and
18% were due to failures of the context mechanism to
tdentify the correct context. The remaining errors are
attributed to the system declining to answer questions
when it determined that its uncertainty about the con-
text was too great.

These figures were derived in a highly subjective fash-
ton, but, nevertheless, we feel they give a roughly ac-
curate picture. For a majority of the utterances that
caused trouble for the template-generating component,
it is clear that adding a new phrase or new slot could
solve the problem. The conclusion we draw from this is
that a template-matching approach can be highly suc-
cessful on a domain of about the same complexity as
ATIS. How well this type of approach would scale up to
a significantly larger domain remains uncertain.

4. ADDITIONAL EXPERIMENTS

We have implemented several parameters that control
the behavior of the system. One parameter is the
template-matcher score cutoff.

We recognized that if a system failed to respond correctly
to a query, it might give incorrect answers to a number
of subsegent context-dependent queries, even though the
subseqgent sentences were processed correctly, given ev-
erything the system can determine about the state of the
dialogue. Therefore, we have included several parame-
ters that regulate the generation of responses in situa-
tions in which, for one reason or another, the state of
the context is in doubt.

One such parameter is a cumulative template-score cut-
off. We reasoned that if the system answers a series of
questions, each of which receives an acceptable, although
less than perfect, template score, eventually a point is
reached in which the system is so uncertain about the

correctness of the accumulated contextual information,
that it should, for evaluation purposes, stop answering
questions until a query is encountered that definitely sets
a new top-level context. This point is detected by mul-
tiplying template scores until the cumulative product
drops below the level indicated by the cumulative cutoff
parameter. Qur official results were produced by using
values of 0.85 and 0.82 for the template score cutoff and
cumulative score cutoff, respectively.

Another parameter controls the choice of one of three
possible ways of dealing with the failure to produce an
answer for a query. When the system fails to answer a
query, it could refuse to answer any further queries until
one is found that sets a new top-level context. Although
this would be a ridiculous way for a system to behave
when interacting with a real user, some preliminary in-
vestigation led us to believe that such a strategy was in-
deed optimal for the evaluation; this is the strategy used
to generate our official results. Another possible strat-
egy, which we dub “always answer,” is to have the system
answer every question in the last previously known con-
text, regardless of how many intermediate queries fail to
produce answers. Finally, we have a “usually answer”
mode, in which queries are always evaluated in the most
recently determined context, unless there is some fea-
ture of the query that indicates explicit dependency on
a question that was not answered (such as a pronoun
or demonstrative reference that could rely on an unan-
swered query for its resolution).

We ran experiments on our system for the following con-
figurations of parameters on both NL and SLS data.
These runs were made by changing only the parameters
discussed above, without attempting to influence the be-
havior of the system in any other way:

1. Relaxed Cutoff. We set the template score cutoff
to 0.82, and the cumulative cutofl to 0.70. Some of
our earlier experiments suggested that these values
were optimal for processing speech recognizer out-
put. (Because of an oversight, they were not used
in the official test).

2. Low Scoring Template Strategy. This strategy
sets the template score cutoff and cumulative cutoff
to be 0.01. This allows very low scoring templates
to be considered as analyses for a sentence. The
conservative strategy of not answering questions af-
ter failure to prodrnce any template at all until the
next context-resetting sentence was still followed.

3. Maximum Recall Strategy. This strategy com-
bines the Low-Scoring Template Strategy with the
Always Answer strategy. It seeks to maximize recall
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by always answering a query whenever any analy-
sis at all is possible. Naturally, precision suffers,
because of the increased chance that some of the
poorly rated analyses will be wrong.

4. Maximum Precision Strategy. We attempted to
maxirmize the system’s precision score by setting the
template score cutoff and the cumulative cutoff to
be 0.99. This strategy causes the system to respond
only to templates with perfect scores and to stop an-
swering in context whenever any uncertainty about
a template exists. Naturally, because some correct
templates will be discarded, recall suffers.

5. Always Answer Strategy. The “always answer”
context-handling strategy was adopted, keeping the
template score cutoff the same as in the official run.

6. Usually Answer Strategy. The “usually answer”
context-handling strategy was adopted, keeping the
template score cutoff the same as in the official run.

5. RESULTS OF EXPERIMENTS

The results we observed for the experiments described
in the previous section {as well as our official results on
the evaluation) were as follows, ordered by increasing
weighted error:

For NL only:

Parameter No | Wtd.
Settings Right | Wrong | Ans | Error
Always Answer 554 721 61 | 29.84
Usually Answer 538 60 89 | 30.42
Relaxed Cutoff 537 62 88 1 30.86
Official Results 533 601 94 31.05
Low-Score Template 558 90| 39| 3188
Maximum Recall 565 98 24 | 32.02
Maximum Precision 480 38 | 169 | 35.66
For SLS:
Parameter No | Wtd.
Settings Right | Wrong ; Ans | Error
Always Answer 457 75 1 155 | 44.40
Relaxed Cutoff 447 69 | 171 | 44.98
Usually Answer 445 69 | 173 | 45.27
Official Resulis 444 69 174 | 4540
Low-Score Template 455 86 | 146 | 46.29
Maximum Recall 460 931 134 | 46.58
Maximum Precision 423 621 202 | 47.45

As can be seen, the predicted parameter settings for
Maximum Recall and Maximum Precision did result in

the desired recall-precision tradeofl, although neither of
these strategies produced the best results as measured
by weighted error. It is also interesting to note that,
with the exception of the tests for Relaxed Cutoff and
Usually Answer configurations {which were in any case
very close), the ordering of the results as measured by
weighted error was the same for both NL and SLS tests,

6. SLS EVALUATION WITH BBN
RECOGNIZER OUTPUT

Because the preliminary results of the February 1992
ATIS benchmark tests suggested that the SRI TRAV-
ELOGUE NL system and the BBN BYBLOS speech-
recognition system had both performed particularly well,
SRI and BBN collaborated on an experiment to see how
well a combined system would have performed on the
benchmark test, using the output of BYBLOS as the in-
put to TRAVELOGUE. We took the BYBLOS output
from the official February 1992 ATIS SPREC test and
ran it through TRAVELOGUE, configured exactly as it
was for the official February 1992 ATIS SLS test. So, al-
though this was not submitted as official February 1992
ATIS SLS test output, it is comparable in every respect
to the official results obtained by BBN and SRI. The
resulting combination produced 482 correct answers, 69
wrong answers, and 136 without answers, for a weighted
error of 39.88%.

This experiment may shed some light on the impact
of speech-recognition accuracy for SLS performance, if
we compare SLS performance with the SRl and BBN
recognizers, holding NL processing constant. The im-
provement of the SLS weighted error from 45.4% to
39.9% represents a error reduction by a factor of 0.12,
and was obtained was obtained by running the NL sys-
tem on input data for which the word error rate on class
A and D sentences was improved from 8 4% to 6.2%, an
error reduction factor of 0.26. The corresponding sen-
tence error rates were 44.5% and 34.6%. for an error
reduction factor of 0.22.

Although the NL processing in TRAVELOGUE is de-
signed to be robust in the face of recognition errors, it is
clear that the point of diminishing return on recognition
accuracy has not yet been reached, and significant im-
provements can be obtained if these error rates can be
reduced still further.

We did one other experiment with the combination of
BYBLOS and TRAVELOGUE, in which we took the
BYBLOS SPREC test output and ran 1t through TRAV-
ELOGUE using the parameter settings that we now be-
lieve to be optimal as a result of the experiments re
ported in the preceding section. This was a combination




of the “always answer” context-handling strategy with
the “relaxed cutoff” parameter settings. We felt that
this would represent the best performance the system
was currently capable of without increasing the basic
underlying competence. In this experiment we obtained
495 correct answers, 77 wrong answers, and 117 without
answers, for a weighted error of 39.16%.

7. ELIMINATING CLASS X
SENTENCES

In addition to the above tests, we ran a test to evalu-
ate the impact of a proposed change to the evaluation
procedures to eliminate class-X sentences from the evalu-
ation. Queries are classified as X for a variety of reasons,
the most common being that the query lies outside the
scope of the database. Although class-X utterances are
not counted when computing the scores for NL and SLS
evalutions, it may be the case that class-X queries that
are clearly outside the scope of the system’s processing
capabilities could adversely impact the system’s ability
to track the context, and thus indirectly affect the sys-
tem’s test results.

If the inclusion of class-X sentences in the test were to
make a large difference in the scores, it would call into
question the success of the effort to eliminate the unpact
of processing class-X queries from the evaluation results.

To test the impact of class-X sentences on our system,
we ran the system configured exactly as it was for the
official test, except that all class-X sentences were ex-
cluded from consideration. We found that the weighted
error decreased by 0.58 for the NL-only test and by 1.0
for the SLS test. While there is an observable “class-X
effect,” it seems to be relatively small with our system,
and would only be noticeable with a processing strategy
that based answering decisions on context uncertainty.

8. SUMMARY AND CONCLUSIONS

It is difficult to draw conclusions from these experiments
about the efficacy of various parameter settings and pro-
cessing strategies for improving performance on the eval-
uation. The results are in fact very similar, and could
well be different with a different test set. It is possible to
conclude with confidence only that the Maximum Pre-
cision strategy is unlikely to yield the lowest weighted
error.

The results of these experiments were rather surprising
in that we had originally believed that the parameter
choices would have a more significant impact on the
weighted error than what we observed. Indeed, the re-
sults show a surprising insensitivity to parameter choice.
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It seems to be the case that the weighted error metric
disguises differences in system behavior. For example,
the Maximum Precision and Maximum Recall strategies
produce vastly different behavior on the SLS test: the
Maximum Recall strategy answers almost 70 queries to
which the Maximum Precision strategy gives no answer.
Yet the difference in weighted error for the two strategies
is less than one point.

For comparing performance across systems, it is desire-
able to have a metric for comparing performan. across
systems that is relatively insensitive to different answer-
ing strategies, and therefore has a better chance of truly
reflecting the comprehensiveness of a system’s coverage
of the domain. These experiments demonstrate that the
weighted error metric at least comes close to having that
property — a fortunate consequence, because i1t was cho-
sen primarily on the basis of its inuitive appeal. On the
other hand, systems with specific characteristics are pre-
ferred for particular purposes. For example, when SRI
uses its system for MADCOW data collection, it runs in
a mode more closely approximating the Maximum Recall
strategy, on the theory that producing some answer, even
though not perfectly correct, will hold the user’s interest
and lead to a smoother flowing dialogue than would fre-
quent “I don’t understand” responses, even though the
experiments indicate that such a strategy is suboptimal
for evaluation. These experiments underscore the need
to exarnine multiple properties of a system to arrive at
conclusions regarding that system’s overall effectiveness
at solving user problems, as effectiveness can depend on
factors other than the system’s ability to obtain a low
weighted error.

An important observation is that the five systems with
the best scotes in the NL evaluation differed by only
3.8 points. We have shown that our system can demon-
strate a variation of more than 3 points in weighted error
through the selection of different answering strategies
holding the basic competence of the system constant.
We would therefore be reluctant to conclude that the
scores achieved on this benchmark test indicate a clear
difference among these five systems in basic competence.

We found it interesting that the Always Answer context
strategy would have produced the best results on this
evaluation, because this is the most reasonable strategy
to employ in a system intended to interact with a user,
rather than merely scoring high on the evaluation. If
the goal is to evaluate systems under conditions that ap-
proximate as much as possible their conditions of use in
the real world, it is reassuring that behavior appropri-
ate to the real world would not be inappropriate for the
evaluation.
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INTEGRATING MULTIPLE KNOWLEDGE SOURCES FOR
DETECTION AND CORRECTION OF REPAIRS IN
HUMAN-COMPUTER DIALOG*

John Bear, John Dowding, Elizabeth Shriberg'
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ABSTRACT

We have analyzed 607 sentences of sponta-
neous human-computer speech data containing re-
pairs, drawn from a total corpus of 10,718 sen-
tences. We present here criteria and techniques for
automatically detecting the presence of a repair,
its location, and making the appropriate cotrec-
tion. The criteria involve integration of knowledge
from several sources: pattern matching, syntactic
and semantic analysis, and acoustics.

INTRODUCTION

Spontaneous spoken language often includes
speech that is not intended by the speaker to be
part of the content of the utterance. This speech
must be detected and deleted in order to correctly
identify the intended meaning. The broad class
of disfluencies encompasses a number of phenom-
ena, including word fragments, interjections, filled
pauses, restarts, and repairs. We are analyzing
the repairs in a large subset (over ten thousand
sentences) of spontaneous speech data collected
for the DARPA Spoken Language Program.’? We
have categorized these disfluencies as to type and
frequency, and are investigating methods for their
automatic detection and correction. Here we re-
port promising results on detection and correction
of repairs by combining pattern matching, syn-
tactic and semantic analysis, and acoustics. This
paper extends work reported in an earlier paper
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the National Science Foundation.

Elizabeth Shriberg is also affiliated with the Depart-
ment of Psychology at the University of California at
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(Shriberg et al., 1992a).

The problem of disfluent speech for language
understanding systems has been noted but has
received limited attention. Hindle (1983) at-
tempts to delimit and correct repairs in sponta-
neous human-human dialog, based on transcripts
containing an “edit signal,” or external and reli-
able marker at the “expunction point,” or point of
interruption. Carbonell and Hayes (1983) briefly
describe recovery strategies for broken-off and
restarted utterances in textual input. Ward (1991)
addresses repairs in spontaneous speech, but does
not attempt to identify or correct them. Qur ap-
proach is most similar to that of Hindle. It differs,
however, in that we make no assumption about
the existence of an explicit edit signal. As a reli-
able edit signal has yet to be found, we take it as
our problem to find the site of the repair automat-
ically.

It is the case, however, that cues to repair exist
over a range of syllables. Research in speech pro-
duction has shown that repairs tend to be marked
prosodically (Levelt and Cutler, 1983) and there
is perceptual evidence from work using lowpass-
filtered speech that human listeners can detect the
occurrence of a repair in the absence of segmental
information (Lickley, 1991).

In the sections that follow, we describe in de-
tail our corpus of spontaneous speech data and
present an analysis of the repair phenomena ob-
served. In addition, we describe ways in which
pattern matching, syntactic and semantic analy-
sis, and acoustic analysis can be helpful in detect-
ing and correcting these repairs. We use pattern
matching to determine an initial set of possible
repairs; we then apply information from syntac-
tic, semantic, and acoustic analyses to distinguish
actual repairs from false positives.




THE CORPUS

The data we are analyzing were collected
as part of DARPA’s Spoken Language Systems
project. The corpus contains digitized waveforms
and transcriptions of a large number of sessions in
which subjects made air travel plans using a com-
puter. In the majority of sessions, data were col-
lected in a Wizard of Oz setting, in which subjects
were led to believe they were talking to a com-
puter, but in which a human actually interpreted
and responded to queries, In a small portion of
the sessions, data were collected using SRI’s Spo-
ken Language System (Shriberg et al., 1992b), in
which no human intervention was involved. Rel-
evant to the current paper is the fact that al-
though the speech was spontaneous, it was some-
what planned (subjects pressed a button to begin
speaking to the system) and the transcribers who
produced lexical transcriptions of the sessions were
instructed to mark words they inferred were ver-
bally deleted by the speaker with special symbols.
For further description of the corpus, see MAD-
COW (1992).

NOTATION

In order to classify these repairs, and to facil-
itate communication among the authors, it was
necessary to develop a notational system that
would: (1) be relatively simple, (2) capture suf-
ficient detail, and (3) describe the vast majority
of repairs observed. Table 1 shows examples of
the notation used, which is described fully in Bear
et al. (1992).

The basic aspects of the notation include
marking the interruption point, the extent of
the repair, and relevant correspondences between
words in the region. To mark the site of a re-
pair, corresponding to Hindle’s “edit signal” (Hin-
dle, 1983), we use a vertical bar (|). To express
the notion that words on one side of the repair
correspond to words on the other, we use a com-
bination of a letter plus a numerical index. The
letter M indicates that two words match exactly.
R indicates that the second of the two words
was intended by the speaker to replace the first.
The two words must be similar—either of the same
lexical category, or morphological variants of the
same base form (including contraction pairs like
“I/I'd”). Any other word within a repair is no-
tated with X. A Lyphen affixed to a symbol in-
dicates a word fragment. In addition, certain cue
words, such as “sorry” or “oops” (marked with
CR) as well as filled pauses (CF) are also labeled

I want fl- flights to boston.
M- | M
what what are the fares
M | M
show me flights daily flights
M1 ! X Ml
I want a flight one way flight
M ] X X M
I want to leave depart before
R | R
what  are what are the fares
M M | M M
..fly to Dboston from boston
R1 M1 l Rl Ml
...fly from boston from denver
M1 R] l M; Rx
what are are there any flights
X X |

Table 1: Examples of Notation

if they occur immediately before the site of a re-
pair.

DISTRIBUTION

Of the 10,000 sentences in our corpus, 607 con-
tained repairs. We found that 10% of sentences
longer than nine words contained repairs. In con-
trast, Levelt (1983) reports a repair rate of 34% for
human-human dialog. While the rates in this cor-
pus are lower, they are still high enough to be sig-
nificant. And, as system developers move toward
more closely modeling human-human interaction,
the percentage is likely to rise.

Although only 607 sentences contained dele-
tions, some sentences contained more than one,
for a total of 646 deletions. Table 2 gives the
breakdown of deletions by length, where length
is defined as the number of consecutive deleted
words or word fragments. Most of the deletions

Deletion Length  Occurrences Percentage
1 376 59%
2 154 24%
3 52 8%
4 25 4%
5 23 4%
6+ 16 3% )

Table 2: Distribution of Repairs by Length




Type Pattern Freq.

Length 1 Repairs

Fragments M- R~ X~ 61%
Repeats MM, 16%
Insertions M| Xy... Xi My 7%
Replacement R | Ry 9%
Other XX 5%
Length 2 Repairs
Repeats M, M, ' M; M, 28%
Replace 2nd M, R, | M Ry 27%
Insertions MMM Xy .. . XiMy  19%
Replace 1st Ry M, I R, M, 10%
Other ] 17%

Table 3: Distributio.. of Repairs by Type

were fairly short; deletions of one or two words ac-
counted for 82% of the data. We categorized the
length 1 and length 2 repairs according to their
transcriptions. The results are summarized in Ta-
ble 3. For simplicity, in this table we have counted
fragments (which always occurred as the second
deleted word) as whole words. The overall rate of
fragments for the length 2 repairs was 34%.

A major repair type involved matching strings
of identical words. Mote than half (339 out of 436)
of the nontrivial repairs (more editing necessary
than deleting fragments and filled pauses) in the
corpus were of this type. Table 4 shows the distri-
butions of these repairs with respect to two param-
eters: the length in words of the matched string,
and the number of words between the two matched
strings. Numbers in parentheses indicate the num-
ber of occurrences, and probabilities represent the
likelihood that the phrase was actually a repair
and not a false positive. Two trends emerge from
these data. First, the longer the matched string,
the more likely the phrase was a repair. Second,
the more words there were intervening between the
matched strings, the less likely the phrase was a
repair.

SIMPLE PATTERN MATCHING

We analyzed a subset of 607 sentences con-
taining repairs and concluded that certain sim-
ple pattern-matching techniques could successfully
detect a number of them. The pattern-matching

Match Fili Length
Length | 0 1 2 3

1 |82 74 69 .28
(39) (65) (43) (39)

2 (10 8 .73 .00
(10) (6) (11} (1)

3 1.0 80 190 —

4 6 @
4 {10 10 — —
2 O

-~ indicates no observations

Table 4: Fill Length vs. Match Length

component reported on here looks for identical se-
quences of words, and simple syntactic anomalies,
such as “a the” or “to from.”

Of the 406 sentences containing nontrivial re-
pairs, the program successfully found 309. Of
these it successfully corrected 177. There were 97
sentences that contained repairs which it did not
find. In addition, out of the 10,517 sentence corpus
(10,718 — 201 trivial), it incorrectly hypothesized
that an additional 191 contained repairs. Thus of
10,517 sentences of varying lengths, it pulled out
500 as possibly containing a repair and missed 97
sentences actually containing a repair. Of the 500
that it proposed as containing a repair, 62% actu-
ally did and 38% did not. Of the 62% that had re-
pairs, it made the appropriate correction for 57%.

These numbers show that although pattern
matching is useful in identifying possible repairs,
it is less successful at making appropriate correc-
tions. This problem stems largely from the over-
lap of related patterns. Many sentences contain a
subsequence of words that match not one but sev-
eral patterns. For example the phrase “FLIGHT
<word> FLIGHT” matches three different pat-
terns:

show the flight earliest flight
M, | X M,

show the flight time flight date
M, R | M R,




delta flight
R, M|

show the united flight

R, M,

Each of these sentences is a false positive for
the other two patterns. Despite these problems
of overlap, pattern matching is useful in reducing
the set of candidate sentences to be processed for
repairs. Rather than applying detailed and pos-
sibly time-intensive analysis techniques to 10,000
sentences, we can increase efficiency by limiting
ourselves to the 500 sentences selected by the pat-
tern matcher, which has (at least on one measure)
a 75% recall rate. The repair sites hypothesized
by the pattern matcher constitute useful input for
further processing based on other sources of infor-
mation.

NATURAL LANGUAGE
CONSTRAINTS

Here we describe two sets of experiments to
measure the effectiveness of a natural language
processing system in distinguishing repairs from
false positives. One approach is based on parsing
of whole sentences; the other is based on parsing
localized word sequences identified as potential re-
pairs. Both of these experiments rely on the pat-
tern matcher to suggest potential repairs.

The syntactic and semantic components of the
Gemini natural language processing system are
used for both of these experiments. Gemini is
an extensive reimplementation of the Core Lan-
guage Engine (Alshawi et al., 1988). It includes
modular syntactic and semantic components, inte-
grated into an efficient all-paths bottom-up parser
(Moore and Dowding, 1991). Gemini was trained
on a 2,200-sentence subset of the full 10,718-
sentence corpus. Since this subset excluded the
unanswerable sentences, Gemini’s coverage on the
full corpus is only an estimated 70% for syntax,
and 50% for semantics.?

Global Syntax and Semantics

In the first experiment, based on parsing com-
plete sentences, Gemini was tested on a subset
of the data that the pattern matcher returned as
likely to contain a repair. We excluded all sen-
tences that contained fragments, resulting in a

?Gemini’s syntactic coverage of the 2,200-sentence
dataset it was trained on (the set of annotated and an-
swerable MADCOW queries) is approximately 91%, while
its semantic coverage is approximately 77%. On a recent
fair test, Gemini's syntactic coverage was 87% and seman-
tic coverage was 71%.
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Syntax Only
Marked Marked
as as
Repair  False Positive
Repairs 68 (96%) 56 (30%)
False Positives 3 (4%) 131 (70%)

Syntax and Semantics

Marked Marked
as as
Repair  False Positive
Repairs 64 (85%) 23 (20%)
False Positives 11 (15%) 90 (80%)

Table 5: Syntax and Semantics Results

dataset of 335 sentences, of which 179 contained
repairs and 176 contained false positives. The ap-
proach was as follows: for each sentence, parsing
was attempted. If parsing succeeded, the sentence
was marked as a false positive. If parsing did not
succeed, then pattern matching was used to detect
possible repairs, and the edits associated with the
repairs were made. Parsing was then reattempted.
If parsing succeeded at this point, the sentence was
marked as a repai:. Otherwise, it was marked as
no opinion.

Table 5 shows the results of these experiments.
We ran them two ways: once using syntactic con-
straints alone and again using both syntactic and
semantic constraints. As can be seen, Gemini
is quite accurate at detecting a repair, although
somewhat less accurate at detecting a false posi-
tive. Furthermore, in cases where Gemini detected
a repair, it produced the intended correction in 62
out of 68 cases for syntax alone, and in 60 out of
64 cases using combined syntax and semantics. In
both cases, a large number of sentences (29% for
syntax, 50% for semantics) received a no opinion
evaluation. The no opinion cases were evenly
split between repairs and false positives in both
tests.

The main points to be noted from Table 5 are
that with syntax alone, the system is quite ac-
curate in detecting repairs, and with syntax and
semantics working together, it is accurate at de-
tecting false positives. However, since the coverage
of syntax and semantics will always be lower than




the coverage of syntax alone, we cannot compare
these rates directly.

Since multiple repairs and false positives can
occur in the same sentence, the pattern matching
process is constrained to prefer fewer repairs to
more repairs, and shorter repairs to longer repairs.
This is done to favor an analysis that deletes the
fewest words from a sentence. It is often the case
that more drastic repairs would result in a syntac-
tically and semantically well-formed sentence, but
not the sentence that the speaker intended. For
instance, the sentence “show me <flights> daily
flights to boston” could be repaired by deleting
the words “fights daily,” and would then yield a
grammatical sentence, but in this case the speaker
intended to delete only “flights.”

Local Syntax and Semantics

In the second experiment we attempted to im-
prove robustness by applying the parser to small
substrings of the sentence. When analyzing long
word strings, the parser is more likely to fail due
to factors unrelated to the repair. For this ex-
periment, the parser was using both syntax and
semantics.

The phrases used for this experiment were the
phrases found by the pattern matcher to contain
matching strings of length one, with up to three
intervening words. This set was selected because,
as can be seen from Table 4, it constitutes a large
subset of the data (186 such phrases). Further-
more, pattern matching alone contains insufficient
information for reliably correcting these sentences.

The relevant substring is taken to be the
phrase constituting the matched string plus in-
tervening material plus the immediately preceding
word. So far we have used only phrases where the
grammatical category of the matched word was ei-
ther noun or name (proper noun). For this test we
specified a list of possible phrase types (NP, VP,
PP, N, Name) that count as a successful parse. We
intend to run other tests with other grammatical
categories, but expect that these other categories
could need a different heuristic for deciding which
substring to parse, as well as a different set of ac-
ceptable phrase types.

Four candidate strings were derived from the
original by making the three different possible
edits, and also including the original string un-
changed. Each of these strings was analyzed by
the parser. When the original sequence did not
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parse, but one of edits resulted in a sequence that
parsed, the original sequence was very unlikely to
be a false positive {right for 34 of 35 cases). Fur-
thermore, the edit that parsed was chosen to be
the repaired string. When more than one of the
edited strings parsed, the edit was chosen by pre-
ferring them in the following order: (1) M,|XM,,
(2) R[MlleMl, (3) M, R11M1 Ry. Of the 37 cases
of repairs, the correct edit was found in 27 cases,
while in 7 more an incorrect edit was found; in
3 cases no opinion was registered. While these
numbers are quite promising, they may improve
even more when information from syntax and se-
mantics is combined with that from acoustics.

ACOUSTICS

A third source of information that can be help-
ful in detecting repairs is acoustics. In this sec-
tion we describe first how prosodic information can
help in distinguishing repairs from false positives
for patterns involving matched words. Second, we
report promising results from a preliminary study
of cue words such as “no” and “well.” And third,
we discuss how acoustic information can aid in
the detection of word fragments, which occur fre-
quently and which pose difficulty for automatic
speech recognition systems.

Acoustic features reported in the following
analyses were obtained by listening to the sound
files associated with each transcription, and by
inspecting waveforms, pitch tracks, and spectro-
grams produced by the Entropic Waves software
package.

Simple Patterns

While acoustics alone cannot tackle the prob-
lem of locating repairs, since any prosodic patterns
found in repairs are likely to be found in fluent
speech, acoustic information can be quite effective
when combined with other sources of information,
in particular with pattern matching.

In studying the ways in which acoustics might
help distinguish repairs from false positives, we
began by examining two patterns conducive to
acoustic measurement and comparison. First, we
focused on patterns in which there was only one
matched word, and in which the two occurrences
of that word were either adjacent or separated by
only one word. Matched words allow for compar-
ison of word duration; proximity helps avoid vari-
ability due to global intonation contours not asso-
ciated with the patterns themselves. We present




here analyses for the M,|M, (“flights for <one>
one person”) and M;|XM, (“<flight> earliest
flight”) repairs, and their associated false positives
(“u s air five one one,” “a flight on flight number
five one one,” respectively).

In examining the M;|M, repair pattern, we
found that the strongest distinguishing cue be-
tween the repairs (N = 20) and the false positives
(N = 20) was the interval between the offset of
the first word and the onset of the second. False
positives had a mean gap of 42 msec (s.d. = 55.8)
as opposed to 380 msec (s.d. = 200.4) for repairs.
A second difference found between the two groups
was that, in the case of repairs, there was a statis-
tically reliable reduction in duration for the sec-
ond occurrence of M;, with a mean difference of
53.4 msec. However because false positives showed
no reliable difference for word duration, this was
a much less useful predictor than gap duration.
FO of the matched words was not helpful in sep-
arating repairs from false positives; both groups
showed a highly significant correlation for, and no
significant difference between, the mean F0 of the
matched words.

A different set of features was found to be use-
ful in distinguishing repairs from false positives
for the M|X M, pattern. A set of 12 repairs
and 24 false positives was examined; the set of
false positives for this analysis included only flu-
ent cases (i.e., it did not include other types of
repairs matching the pattern). Despite the small
data set, some suggestive trends emerge. For ex-
ample, for cases in which there was a pause (200
msec or greater) on only one side of the inserted
word, the pause was never after the insertion (X)
for the repairs, and rarely before the X in the
false positives. A second distinguishing character-
istic was the peak F0 value of X. For repairs, the
inserted word was nearly always higher in F0 than
the preceding M, ; for false positives, this increase
in F0 was rarely observed. Table 6 shows the re-
sults of combining the acoustic constraints just de-
scribed. As can be seen, such features in combina-
tion can be quite helpful in distinguishing repairs
from false positives of this pattern. Future work
will investigate the use of prosody in distinguish-
ing the M;|X M, repair not only from false posi-
tives, but also from other possible repairs having
this pattern, i.e., M1R1'M1R1 and R1M1|R1M1.

Pauses after Pauses before
X (only) X (only)
and and
FO of X less FO of X greater
than FO of 1st M, | than FO of 1st M,
Repairs .00 .92
False .58 .00
Positives

Table 6: Combining Acoustic Characteristics of
M| X M; Repairs

Cue Words

A second way in which acoustics can be helpful
given the output of a pattern matcher is in deter-
mining whether or not potential cue words such
as “no” are used as an editing expression (Hock-
ett, 1967) as in “...flights <between> <boston>
<and> <dallas> <no> between oakland and
boston.” False positives for these cases are in-
stances in which the cue word functions in some
other sense (“I want to leave boston no later than
one p m.”). Hirshberg and Litman (1987) have
shown that cue words that function differently can
be distinguished perceptually by listeners on the
basis of prosody. Thus, we sought to determine
whether acoustic analysis could help in deciding,
when such words were present, whether or not
they marked the interruption point of a repair.

In a preliminary study of the cue words “no”
and “well,” we compared 9 examples of these
words at the site of a repair to 15 examples of
the same words occurring in fluent speech. We
found that these groups were quite distinguishable
on the basis of simple prosodic features. Table 7
ghows the percentage of repairs versus false pos-
itives characterized by a clear rise or fall in F0

F0O FO Lexical Cont.
rise fall stress speech

Repairs .00 1.00 .00 .00
False Positives .87 .00 87 .73

Table 7: Acoustic Characteristics of Cue Words
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Figure 1: A glottalized fragment

(greater than 15 Hz), lexical stress (determined
perceptually), and continuity of the speech im-
mediately preceding and following the editing ex-
pression (“continuous” means there was no silent
pause on either side of the cue word). As can be
seen, at least for this limited data set, cue words
marking repairs were quite distinguishable from
those same words found in fluent strings on the
basis of simple prosodic features.

Fragments

A third way in which acoustic knowledge can
assist in detecting and cotrecting repairs is in the
recognition of word fragments. As shown earlier,
fragments are exceedingly common; they occurred
in 366 of our 607 repairs. Fragments pose diffi-
culty for state-of-the-art recognition systems be-
cause most recognizers are constrained to produce
strings of actual words, rather than allowing par-
tial words as output. Because so many repairs in-
volve fragments, if fragments are not represented
in the recognizer output, then information relevant
to the processing of repairs is lost.

We found that often when a fragment had suf-
ficient acoustic energy, one of two recognition er-
rors occurred. Either the fragment was misrecog-
nized as a complete word, or it caused a recog-
nition error on a neighboring word. Therefore if
recognizers were able to flag potential word frag-
ments, this information could aid subsequent pro-
cessing by indicating the higher likelihood that
words in the region might require deletion. Frag-
ments can also be useful in the detection of repairs
requiring deletion of more than just the fragment.
In approximately 40% of the sentences containing
fragments in our data, the fragment occurred at
the right edge of a longer repair. In a portion of

these cases, for example,
“leaving at <seven> <fif-> eight thirty,”

the presence of the fragment is an especially im-
portant cue because there is nothing (e.g., no
matched words) to cause the pattern matcher to
hypothesize the presence of a repair.

We studied 50 fragments drawn at random
from our total corpus of 366. The most reliable
acoustic cue over the set was the presence of a
silence following the fragment. In 49 out of 50
cases, there was a silence of greater than 60 msec;
the average silence was 282 msec. Of the 50 frag-
ments, 25 ended in a vowel, 13 contained a vowel
and ended in a consonant, and 12 contained no
vocalic portion.

1t is likely that recognition of fragments of the
first type, in which there is abrupt cessation of
speech during a vowe}, can be aided by looking for
heavy glottalization at the end of the fragment.
We coded fragments as glottalized if they showed
irregular pitch pulses in their associated waveform,
spectrogram, and pitch tracks. We found glottal-
ization in 24 of the 25 vowel-final fragments in
our data. An example of a glottalized fragment is
shown in Figure 1.

Although it is true that glottalization occurs
in fluent speech as well, it normally appears on
unstressed, low F0 portions of a signal. The 24
glottalized fragments we examined however, were
pot at the bottom of the speaker’s range, and
most had considerable energy. Thus when com-
bined with the feature of a following silence of at
least 60 msec, glottalization on syllables with suffi-
cient energy and not at the bottom of the speaker’s




range, may prove a useful feature in recognizing
fragments.

CONCLUSION

In summary, disfluencies occur at high enough
rates in human-computer dialog to merit consid-
eration. In contrast to earlier approaches, we have
made it our goal to detect and correct repairs au-
tomatically, without assuming an explicit edit sig-
nal. Without such an edit signal, however, re-
pairs are easily confused both with false positives
and with other repairs. Preliminary results show
that pattern matching is effective at detecting re-
pairs without excessive overgeneration. Our syn-
tactic/semantic approaches are quite accurate at
detecting repairs and correcting them. Acoustics
is a third source of information that can be tapped
to provide evidence about the existence of a repair.

While none of these knowledge sources by it-
self is sufficient, we propose that by combining
them, and possibly others, we can greatly enhance
our ability to detect and correct repairs. As a next
step, we intend to explore additional aspects of the
syntax and semantics of repairs, analyze further
acoustic patterns, and pursue the question of how
best to integrate information from these multiple
knowledge sources.

ACKNOWLEDGMENTS

We would like to thank Patti Price for her
helpful comments on earlier drafts, as well as for
her participation in the development of the nota-
tional system used. We would also like to thank
Robin Lickley for his feedback on the acoustics
section, Elizabeth Wade for assistance with the
statistics, and Mark Gawron for work on the Gem-
ini grammar.

REFERENCES

1. Alshawi, H, Carter, D., van Eijck, 1., Moore, R.
C., Moran, D. B., Pereira, F., Pulman, S., and
A. Smith (1988) Research Programme In Natural
Language Processing: July 1988 Annual Report,
SRI International Tech Note, Cambridge, Eng-
land.

2. Bear, l., Dowding, J., Price, P., and E. E.
Shriberg (1992) “Labeling Conventions for No-
tating Grammatical Repairs in Speech,” unpub-
lished manuscript, to appear as an SRI Tech Note.

3. Hirschberg, J. and D. Litman (1987) “Now Let’s
Talk About Now: Identifying Cue Phrases Into-
nationally,” Proceedings of the ACL, pp. 163-171.

4. Carbonell, J. and P. Hayes, P., (1983) “Recov-
ery Strategies for Parsing Extragrammatical Lan-

A-16

10.

11.

12.

13.

14.

guage,” American Journal of Computational Lin-
guistics, Vol. 9, Numbers 3-4, pp. 123-146.

. Hindle, D. (1983) “Deterministic Parsing of Syn-

tactic Non-fluencies,” Proceedings of the ACL, pp.
123-128.

. Hockett, C. (1967) “Where the Tongue Slips,

There Slip 1,” in To Honor Roman Jakobson: Vol.
2, The Hague: Mouton.

. Levelt, W. (1983) “Monitoring and self-repair in

speech,” Cognition, Vol. 14, pp. 41-104.

. Levelt, W, and A. Cutler (1983) “Prosodic Mark-

ing in Speech Repair,” Journal of Semantics, Vol.
2, pp- 205-217.

. Lickley, R., R. Shillcock, and E. Bard (1991)

“Processing Disfluent Speech: How and when are
disfluencies found?” Proceedings of the Second
FEuropean Conference on Speech Communication
and Technology, Vol. 3, pp. 1499-1502,

MADCOW (1992) “Multi-site Data Collection for
a Spoken Language Corpus,” Proceedings of the
DARPA Speech and Natural Language Workshop,
February 23-26, 1992.

Moore, R. and J. Dowding (1991) “Efficient
Bottom-up Parsing,” Proceedings of the DARPA
Speech and Natural Language Workshop, Febru-
ary 19-22, 1991, pp. 200-203.

Shriberg, E., Bear, J., and Dowding, J. (1992 a)
“Automatic Detection and Correction of Repairs
in Human-Computer Dialog” Proceedings of the
DARPA Speech and Natural Language Workshop,
February 23-26, 1992.

Shriberg, E., Wade, E., and P. Price (1992 b)
“Human-Machine Problem Solving Using Spoken
Language Systems (SLS): Factors Affecting Per-
formance and User Satisfaction,” Proceedings of
the DARPA Speech and Natural Language Work-
shop, February 23-26, 1992,

Ward, W. (1991} “Evaluation of the CMU ATIS
System,” Proceedings of the DARPA Speech and
Natural Language Workshop, February 19-22,
1991, pp. 101-105.




meErnationsa

Technical Note 522 ¢ February 22, 1993

A System for Labeling Self-Repairs in Speech

Prepared by:

John Bear
Computer Scientist

John Dowding
Computer Scientist

Artificial Intelligence Center
Computing and Engineering Sciences Division

and

Elizabeth Shriberg
Research Linguist

Patti Price
Senior Computer Scientist

Speech Research and Technology Program
Computing and Engineering Sciences Division

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

333 Ravenswood Avenue ¢ Menlo Park. CA 84025-3493 o (415)326-6200 » FAX: (415)326-5512 e Telex: 334486
A-17




1. INTRODUCTION

This document outlines a system for labeling self-repairs in spontaneous speech. The sys-
tem marks the location and extent of a repair, as well as relevant words in the region of the
repair. Together these labels determine the relationship between the “error” and the
hypothesized “correction.” The system is designed to be able to capture distinctions
among different repair patterns while remaining easy to learn, apply, and integrate into
existing transcription formats. Although the system was originally developed to aid our
research on automatic detection and correction of repairs (Shriberg, Bear, & Dowding,
1992; Bear, Dowding & Shriberg, 1992), we hope that it may also prove useful for annota-
tion of spontaneous speech data in related fields.

By “self-repairs” we refer to cases in which one or more words (or word fragments) must
be disregarded in determining a speaker’s “intended” utterance. Although one can never
be sure exactly what a speaker intends, listeners can often reliably make such judgments.
For example, given the utterance: “Show me flights from Boston from Denver to Dallas,”
most listeners would agree that “from Boston” should be disregarded, and that “Show me
flights from Denver to Dallas” should be taken as the speaker's intended utterance. Often
such judgments can be made on the basis of a transcription alone; listening to the utterance
makes available prosodic cues which can greatly facilitate these judgments.

The definition of what constitutes a repair varies in the literature (e.g., Levelt, 1989;
Blackmer & Mitton, 1991; Shriberg, Bear & Dowding, 1992). The present system is
designed to annotate four types of phenomena:

* repairs involving replacements (as in the example above) or insertions
e repetitions of a string of one or more words (“Show me show me the flight...”)
e fresh starts (“Show me the What are the flights...”)

¢ cases involving a word fragment (“Show me the flights from Bos- Denver”).

A number of other spontaneous speech phenomena are not of concern to this system. For
example, filled pauses (“um,” “uh”) or other fillers (“well,” “okay”) are not marked unless
they occur within an actual repair. This system also does not label silent pauses, uncor-
rected mispronunciations, repairs involving more than one speaker, and repairs involving
a single speaker but in which the correction is a considerable distance (more than one sen-
tence away) from the error.

In Sections 2 through 5, we describe our conventions for marking the site of a repair, and
for marking words that distinguish among different repair patterns that we have found use-
ful in our own research. All of the examples included actually occurred in our corpus (our
data consisted of human-computer dialog in the air travel planning domain, see MAD-
COW, 1992). In Section 6, we provide a suggestion for how these labels may be inte-
grated into existing transcription systems.

A-19




2. REPAIR SITE

We have adopted a vertical bar (1) notation for marking the site of the repair. The bar marks
the resumption of fluent speech; it appears where Hindle (1983) puts his double-dash rep-
resenting what he calls an “edit signal.” In the examples that follow, we place labels on the
line below the text.

Example:
List these in increasing in order of increasing fare
I

In the example just cited, the material following the bar (“in order of increasing fare”) is a
continuation of some of the material that preceded the bar (“List these”). In some repairs,
however, the material after the bar constitutes the beginrung of a new sentence. These
repairs are often referred to as “fresh starts” (e.g., Levelt, 1989).

We mark fresh starts with a special kind of bar notation, so that they can be distinguished
from other types of repairs. For fresh starts we use either a period-bar (.|) or a double-bar
(). The .| notation is used for cases in which there is a semantic relationship between the
words preceding and following the bar; using this notation commits the labeler to labeling
relationships between individual words on either side of the bar (as explained in Section
3). For instance, in the example below, “what is the cheapest” appears on both sides of the
bar, and “fare” can be thought of as replacing the word fragment “fi-.”

Example:
What is the cheapest fi- what is the cheapest fare
A

For fresh starts in which a new idea is initiated, we use a double-bar (ll) to mark the repair
site. Use of the double bar means that the labeler is not committed to marking the relation-
ships between words preceding and following the repair site. In the next example, there is
a change in the semantics of the utterance, and although there are matching words on
either side of the double-bar (i.e. “does this flight”) it would be more difficult to annotate
this utterance at the word level because of the presence of many unmatched words.

Example:
What time does this flight arrive  where does this flight make a stop

Use of the .| versus |l notation for repairs that constitute fresh starts is therefore a decision
on the part of the labeler that is made by considering both the semantic relatedness of the
material preceding and following the repair site, and the degree to which there are word-
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by-word correspondences between these two portions of the utterance. A rule of thumb is
to use the double-bar for any cases in which it would be difficult to determine word-by-
word correspondences.

3. WORD-LEVEL LABELS

Individual words in the region of a repair are annotated with one of four possible labels:
M (for “matching”), R (for “replacement”), X (for “insertion” or “deletion”) or C (for “cue
word”).

3.1 Matching Words

Repairs often include repetitions of words or phrases. We note these words with the letter
M (for match) plus a numerical index. Two occurrences of M, indicate a repetition of the
same word.

Examples:
I wantto go to to Boston
My | M
I'd like I'd like to stop in Washington
M, M, A M; M,

3.2 Replacements

In many cases we want to express the notion of one word replacing another. This we indi-
cate with an R and a numerical index.

Examples:
to the city at Atlanta in Atlanta using ground transportation

R; M, | R M

What are the  cheap cheapest one way flights

Ry, | R
In the first example, “in” replaces “at.” In both examples the relationship between the
two elements constituting the replacement is one of shared grammatical category. In the
second example, not only do the two words have the same grammatical category, they are
also different morphological forms of the same word.
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Finally, in the case of similar but different contractions as illustrated below, we have
elected to use both M and R where appropriate, though clearly there are other reasonable
alternatives. To represent the contracted forms, we use a caret (*) to link the associated
labels.

Examples:
Allright I'll I'm  interested in flight five eleven
Mi™R; | M;™R,;
I'd like I would like breakfast served
MR, M, M R, M,

Note that these examples of contractions differ from the example in Section 3.1. Where
the entire contraction is repeated, as in Section 3.1, we simply treat the word as a single
unit and annotate it with M;. When only part of the contraction is repeated, we break the
contraction down and annotate each of the parts individually.

3.3 Insertions and Deletions

Words which figure in a repair (typically those which occur between the repair site and a
word marked with M or R) and which are not themselves marked with an M or R are
marked with an X. Xs which occur to the left of a vertical bar indicate deletions; those that
occur to the right indicate insertions.

Example:
List the aircraft list types of aircraft...
M, X M, | M X X M

This example illustrates a potential difficulty in deciding whether to use X or R. The best
we can say here is that there is no obvious syntactic or semantic relationship between
“the” and “types of.” If we had the same grammatical category repeated, or nouns describ-
ing the same semantic class, such as “aircraft/airplanes,” then we would use R instead of
X.

Since we do not annotate a construction as as a repair unless some of the words were
intended to be deleted, we never have an annotation such as “ { X ” where nothing to the
left of the bar is annotated. We have also never encountered a sentence which we felt
ought to be labeled “ X IX™.

3.4 Cues

We label cue words and phrases (such as “I’m sorry”) that occur immediately before the
repair site with C. For cue phrases, each individual word is marked with a C.
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Examples:
from Atlanta back to Pittsburgh I'm sorry back to Denver
M; M, R; C ¢ | My M, R
to Atlanta I mean sorry Dallas Fort Worth to  Atlanta

M, C ¢ C | X X X X M

4. LABELING NONWORDS

4.1 Fllled Pauses

We differ from some researchers (e.g. Levelt, 1989; Blackmer & Mitton, 1991) in that we
do not label any cases as repairs if simply a filled pause (typically “uh” or “um™) is
present. We do, however, label filled pauses that occur within a longer repair. These filled
pauses are marked with FP.

Examples:
Show me just the economy class fares uh flights
R, FP | R;
How long is the layover in Denver uh in Dallas
M, R FP | M; R

4.2 Word Fragments

Word fragments occur frequently immediately before a repair site. We indicate fragments
by attaching a hyphen to the appropriate label. For example, if we want to indicate that a
word is a replacement for a previously uttered word fragment, we add a hyphen to the R;,
as in the following example.

Example:
on July fif- on July twentieth
My M, R;- | M; M, R,

In this example, the labeler’s judgment is that “twentieth” is meant to replace the fragment
“fif-” which was likely to have been the start of the word “fifteenth.”
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Previously we have used M; to indicate repetition of identical words and R; to indicate two
words that are similar but not identical. In cases in which a word fragment like “phila-" is
followed by a similar word like “Philadelphia”—that is, in which a labeler feels it is likely
that the fragment was the beginning of what would have been a matched word—the label
M- should be used.

Example:
Also list fl-  flights from Atlanta to Boston...
Mpi- 1 M;

Fragments that seem to be neither matched nor replaced by a word to the right of the repair
site are labeled with X- .

Show me the s- flights that are nonstop

X- 1

§. REPAIR EXTENT: HOW MUCH TO ANNOTATE

We have been tacitly following some important conventions about how far to the left and
right of the repair site words should be labeled. Repairs whose repair site is marked by |
or .| follow these conventions: To the left of the vertical bar, we always annotate all of the
words to be “deleted” and only those. An X under a word to the left of the bar means it
was intended to be “deleted,” hence we do not put an X under a word to the left of the bar
unless we think it is part of the error. The words to the right of the bar are only labelled if
we believe they are part of the “correction.” Typically the last word labeled in a correction
will be labeled with either an M; or an R;, and we do not label the rest of the words in the
utterance after that with X.

Example:

I'd like I'd like to stop in Washington
Correct: M, M, | M; M)
Incorrect: My M, | M) M X X X X

What is the earliest flight leaving leaving Boston

Correct: Myl M

Incorrect: X X X X X M | M;




For fresh starts whose repair site is labeled with Il, we label all words leftward from the
repair site to the beginning of the sentence (they should always be either Xs, Cs, or FPs),
but do not label any words to the right of the repair site.

Example:
Now could you What is the ground transportation available

X X X |

6. LABELS IN TRANSCRIPTIONS

For purposes of exposition, we have in this document associated labels with transcriptions
simply by placing the labels directly under the words they refer to. In practice, this can be
awkward if the utterance is long and/or contains more than one repair, and in general it
adds clutter to transcriptions. A simple convention that avoids these problems is to associ-
ate an identification number with each repair, and to indicate this number at the repair site
in a transcript. The particular sequence of labels associated with the repair can then be
listed in a separate file, under the identification number. Because no words are “skipped”
when labeling leftward and rightward of the repair site, and since the location of the iden-
ti.ication number in the transcript corresponds to the bar in the label sequence, the linking
of labels to words in the transcript is completely determined.

Example:
I'd like to f- #001 go at nine #002 ten
001. R;- | Ry
002. R; | R

Corrected sentence: I'd like to go at ten.

In the example above, we have used a pound sign (#) followed by a number as an identi-

fier. The format and characters used in identifiers is arbitrary, however; identifiers should
be determined individually by researchers to avoid any potential confusion with symbols
they use in their own transcription system.
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Abstract

We describe the modification of a grammar to take advantage of prosodic information provided
by a speech recognition system. This initial study is limited to the use of relative duration of
phonetic segments in the assignment of syntactic structure, specifically in ruling out alternative
parses in otherwise ambiguous sentences. Taking advantage of prosodic information in parsing can
make a spoken language system more accurate and more efficient, if prosodic-syntactic mismatches,
or unlikely matches, can be pruned. We know of no other work that has succeeded in automatically
extracting speech information and using it in a parser to rule out extraneous parses.

1 Introduction

Prosodic information can mark lexical stress, identify phrasing breaks, and provide information useful
for semantic interpretation. Each of these aspects of prosody can benefit a spoken language system
(SLS). In this paper we describe the modification of a grammar to take advantage of prosodic infor-
mation provided by a speech component. Though prosody includes a variety of acoustic phenomena
used for a variety of linguistic effects, we limit this initial study to the use of relative duration of pho-
netic segments in the assignment of syntactic structure, specifically in ruling out alternative parses
in otherwise ambiguous sentences.

It is rare that prosody alone disambiguates otherwise identical phrases. However, it is also rare
that any one source of information is the sole feature that separates one phrase from all competitors.
Taking advantage of prosodic information in parsing can make a spoken language system more
accurate and more efficient, if prosodic-syntactic mismatches, or unlikely matches, can be pruned
out. Prosodic structure and syntactic structures are not, of course, completely identical. Rhythmic
structures and the necessity of breathing influence the prosodic structure, but not the syntactic
structure (Gee and Grosjean 1983, Cooper and Paccia-Cooper 1980 ). Further, there are aspects of
syntactic structure that are not typically marked prosodically. OQur goal is to show that at least some
prosodic information can be automatically extracted and used to improve syntactic analysis. Other
studies have pointed to possibilities for deriving syntax from prosody (see e.g., Gee and Grosjean 1983,
Briscoe and Boguraev 1984, and Komatsu, Oohira, and Ichikawa 1989) but none to our knowledge
have communicated speech information directly to a parser in a spoken langnage system.
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2 Corpus

For our corpus of sentences we selected a subset of a corpus developed previously (see Price et
al. 1989) for investigating the perceptual role of prosodic information in disambiguating sentences.
A set of 35 phonetically ambiguous sentence pairs of differing syntactic structure was recorded by
professional FM radio news announcers. By phonetically ambiguous sentences, we mean sentences
that consist of the same string of phones, i.e., that suprasegmental rather than segmental information
is the basis for tne distinction between members of the pairs. Men Lers of the pairs were read in
disambiguating contexts on days separated by a period of several weeks to avoid exaggeration of the
contrast. In the earlier study listeners viewed the two contexts while hearing one member of the pair,
and were asked to select the appropriate context for the sentence. The results showed that listeners
can, in general, reliably separate phonetically and syntactically ambiguous sentences on the basis
of prosody. The original study investigated seven types of structural ambiguity. The present study
used a subset of the sentence pairs which contained prepositional phrase attachment ambiguities, or
particle/preposition ambiguities (see Appendix).

If naive listeners can reliably separate phonetically and structurally ambiguous pairs, what is
the basis for this separation? In related work on the perception of prosodic information, trained
phoneticians labeled the same sentences with an integer between zero and five inclusive between
every two words. These numbers, ‘prosodic break indices,” encode the degree of prosodic decoupling
of neighboring words, the larger the number, the more of a gap or break between the words. We
found that we could label such break indices with good agreement within and across labelers. In
addition, we found that these indices quite often disambiguated the sentence pairs, as illustrated
below. '

e Marge 0 would 1 never 2 deal 0 in 2 any 0 guys
e Marge 1 would 0 never 0 deal 3 in 0 any 0 guise

The break indices between ‘deal’ and ‘in’ provide a clear indication in this case whether the verb
is ‘deal-in’ or just ‘deal.’ The larger of the two indices, 3, indicates that in that sentence, ‘in’ is not
tightly coupled with ‘deal’ and hence is not likely to be a particle.

So far we had established that naive listeners and trained listeners appear to be able to sepa-
rate suc ambiguous sentence pairs on the basis of prosodic information. If we could extract such
information automatically perhaps we could make it available to a parser. We found a clue in an
effort to assess the phonetic ambiguity of the sentence pairs. We used SRI's DECIPHER speech
recognition system, constrained to recognize the correct string of words, to automatically label and
time-align the sentences used in the earlier referenced study. The DECIPHER system is particularly
well suited to this task because it can model and use very bushy pronunciation networks, accounting
for much more detail in pronunciation than other systems. This extra detail makes it better able
to time-align the sentences and is a stricter test of phonetic ambiguity. We used the DECIPHER
system (Weintraub et al. 1989) to label and time-align the speech, and verified that the sentences
were, by this measure as well as by the earlier perceptual verification, truly ambiguous phonetically.
This meant that the information separating the member of the pairs was not in the segmental infor-
mation, but in the suprasegmental information: duration, pitch and pausing. As a byproduct of the
labeling and time alignment, we noticed that the durations of the phones could be used to separate
members of the pairs. This was easy to see in phonetically ambiguous sentence pairs: normally the
structure of duration patterns is obscured by intrinsic duration of phones and the contextual effects
of neighboring phones. In the phonetically ambiguous pairs, there was no need to account for these
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effects in order to see the striking pattern in duration differences. If a human looking at the duration
patterns could reliably separate the members of the pairs, there was hope for creating an algorithm
to perform the task automatically. This task could not take advantage of such pairs, but would have
to face the problem of intrinsic phone duration.

Word break indices were generated automatically by normalizing phone duration according to
estimated mean and variance, and combining the average normalized duration factors of the final
syllable coda consonants with a pause factor. Let d; = (d; — p;)/0; be the normalized duration of
the ith phoneme in the coda, where u; and o; are the mean and standard deviation of duration for
phone j. dp is the duration (in ms) of the pause following the word, if any. A set of word break
indices are computed for all the words in a sentence as follows:

n= L 2 d; +d,/70
Ml il
The term dp /70 was actually hard-limited at 4, so as not to give pauses too much weight. The set A
includes all coda consonaats, but not the vowel nucleus unless the syllable ends in a vowel. Although
the vowel nucleus provides some boundary cues, the lengthening associated with prominence can
be confounded with boundary lengthening and the algorithm was slightly more reliable without
using vowel nucleus information. These indices n are normalized over the sentence, assuming known
sentence boundaries, to range from zero to five (the scale used for the initial perceptual labeling).
The correlation coefficient between the hand-labeled break indices and the automatically generated
break indices was very good: 0.85.

3 Incorporating Prosody Into A Grammar

Thus far, we have shown that naive and trained listeners can rely on suprasegmental information
to separate ambiguous sentences, and we have shown that we can automatically extract information
that correlates well with the perceptual labels. It remains to be shown how such information can
be used by a parser. In order to do so we modified an already existing, and in fact reasonably large
grammar. The parser we use is the Core Language Engine developed at SRI in Cambridge (Alshawi
et al. 1988).

Much of the modification of the grammar is done automatically. The first thing is to systematically
change all the rules of the form A — B C to be of the form 4 — B Link C, where Link is a new
grammatical category, that of the prosodic break indices. Similarly all rules with more than two right
hand side elements need to have link nodes interleaved at every juncture: e.g.,arule A - BC Dis
changed into A — B Link, C Link; D. ,

Next, allowance must be made for empty nodes. It is common practice to have rules of the form
NP — ¢ and PP — ¢ in order to handle wh-movement and relative clauses. These rules necessitate
the incorporation into the modified grammar of a rule Link — ¢. Otherwise, a sentence such as a
wh-question will not parse because an empty node introduced by the grammar will either not be
preceded by a link, or not be followed by one.

The introduction of empty links needs to be constrained so as not to introduce spurious parses.
If the only place the empty NP or PP etc. could fit into the sentence is at the end, then the only
place the empty Link can go is right before it so there is no extra ambiguity introduced. However if
an empty wh-phrase could be posited at a place somewhere other than the end of the sentence, then
there is ambiguity as to whether it is preceded or followed by the empty link.

For instance, for the sentence, “What did you see _ on Saturday?” the parser would find both of
the following possibilities:
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¢ What L did L you L see L empty-NP empty-L on L Saturday?

¢ What L did L you L see empty-L empty-NP L on L Saturday?

Hence the grammar must be made to automatically rule out half of these possibilities. This can be
done by constraining every empty link to be followed immediately by an empty wh-phrase, or a con-
stituent containing an empty wh-phrase on its left branch. It is fairly straightforward to incorporate
this into the routine that automatically modifies the grammar. The rule that introduces empty links
gives them a feaiure-vaiue pair: empiy-iink=y. The rules that introduce other empty constituents
are modified to add to the constituent the feature-value pair: trace_on_left_branch=y. The links zero
through five are given the feature-value pair empty_link=n. The default value for trace.on_left_branch
is set to n so that all words in the lexicon have that value. Rules of the form Ag — A; Link; ... A,
are modified to insure that 4o and A4, have the same value for the feature trace_on_left_branch. Addi-
tionally, if Link; has empty.link=y then A;,; must have trace_on_left_branch=y. These modifications,
incorporated into the grammar-modifying routine, suffice to eliminate the spurious ambiguity.

4 Setting Grammar Parameters

Running the grammar through our procedure, to make the changes mentioned above, results in a
grammar that gets the same number of parses for a sentence with links as the old grammar would
have produced for the corresponding sentence without links.

In order to make use of the prosodic information we still need to make an additional important
change to the grammar: how does the grammar use this information? This area is a vast arex of
research. The present study shows the feasibility of one particular approach. In this initial endeavor,
we made the most conservative changes imaginable after examining the break indices on a set of
sentences. We changed the rule N — N Link PP so that the value of the link must be between 0 and
2 inclusive (on a scale of 0-5) for the rule to apply. We made essentially the same change to the rule
for the construction verb plus particle, VP — V Link PP, except that the value of the link must, in
this case, be either 0 or 1.

After setting these two parameters we parsed each of the sentences in our corpus of 14 sentences,
and compared the number of parses to the number of parses obtained without benefit of prosodic
information. For half of the sentences, i.e., for one member of each of the sentence pairs, the number
of parses remained the same. For the other members of the pairs, the number of parses was reduced,
in many cases from two parses to one.

The actual sentences and labels are in the appendix. The incorporation of prosody resulted in
a reduction of about 25% in the number of parses found, as shown in table 1. Parse times increase
about 37%.

In the study by Price et al., the sentences with more major breaks were more reliably identified
by the listeners. This is exactly what happens when we put these sentences through our parser too.
The large prosodic gap between a noun and a following preposition, or between a verb and a following
preposition provides exactly the type of information that our grammar can easily make use of to rule
out some readings. Conversely, a small prosodic gap does not provide a reliable way to tell which
two constituents combine. This coincides with Steedman’s (1989) observation that syntactic units
do not tend to bridge major prosodic breaks.

We can construe the large break between two words, for example a verb and a preposition/particle,
as indicating that the two do not combine to form a new slightly larger constituent in which they are
sisters of each other. We cannot say that no two constituents may combine when they are separated
by a large gap, only that the two smallest possible constituents, i.e., the two words, may not combine.
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parse parse

# parses | # parses| time time

sentence no with no with

i.d. prosody | prosody | prosody | prosedy

la 10 4 5.3 5.3
1b 10 10 53 7.7
2a 10 7 3.6 4.3
2b 10 10 3.6 4.0
3a 2 1 2.3 2.7
3b 2 2 2.3 3.7
4a 2 1 3.2 4.7
4b 2 2 3.2 5.5
5a 2 1 1.7 2.5
5b 2 2 1.6 2.9
6a 2 1 2.5 2.8
6b 2 2 2.5 4.1
7a 2 1 0.8 1.3
7b 2 2 0.8 1.5
TOTAL 60 46 38.7 53.0

Table 1: The number of parses and parse times (in seconds) with and without the use of prosodic
information.

To do the converse with small gaps and larger phrases simply does not work. There are cases
where there is a small gap between two phrases that are joined together. For example there can be a
small gap between the subject NP of a sentence and the main VP, yet we do not want *o say that the
two words on either side of the juncture must form a constituent, e.g., the head noun and auxiliary
verb.

The fact that parse times increase is due to the way in which prosodic information is incorporated
into the text. The parser does a certain amount of work for each word, and the effect of adding break
indices to the sentence is essentially to double the number of words that the parser must process.
We expect that this overhead will constitute a less significant percentage of the parse time as the
input sentences become more complex. We also hope to be able to reduce this overhead with a better
understanding of the use of prosodic information and how it interacts with the parsing of spoken

language.

5 Corroboration From Other Data

After devising our strategy, changing the grammar and lexicon, running our corpus through the
parser, and tabulating our results, we looked at some new data that we had not considered before,
to get an idea of how well our methods would carry over. The new corpus we considered is from a
recording of a short radio news broadcast. This time the break indices were put into the transcript
by hand. There were twenty-two.places in the text where our attachment strategy would apply. In
eighteen of those, our strategy or a very slight modification of it, would work properly in ruling out
some incorrect parses and in not preventing the correct parse from being found. In the remaining
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four sentences, there seem to be other factors at work that we hope to be able to incorporate into
our system in the future. For instance it has been mentioned in other work that the length of a
prosodic phrase, as measured by the number of words or syllables it contains, may affect the location
of prosodic boundaries. We are encouraged by the fact that our strategy seems to work well in
eighteen out of twenty-two cases on the news broadcast corpus.

6 Conclusion

The sample of sentences used for this study is extremely small, and the principal test set used,
the phonetically ambiguous sentences, is not independent of the set used to develop our system.
We therefore do not want to make any exaggerated claims in interpreting our results. We believe
though, that we have found a promising and novel approach for incorporating prosodic information
into a natural language processing system. We have shown that some extremely common cases of
syntactic ambiguity can be resolved with prosodic information, and that grammars can be modified
to take advantage of prosodic information for improved parsing. We plan to test the algorithm for
generating prosodic break indices on a larger set of sentences by more talkers. Changing from speech
read by professional speakers to spontaneous speech from a variety of speakers will no doubt require
modification of our system along several dimensions. The next steps in this research will include:

¢ Investigating further the relationship between prosody and syntax, including the different roles
of phrase breaks and prominences in marking syntactic structure,

¢ Improving the prosodic labeling algorithm by incorporating intonation and syntactic/semantic
information,

¢ Incorporating the automatically labeled information in the parser of the SRI Spoken " anguage
System (Moore, Pereira and Murveit 1989),

o Modeling the break indices statistically as a fanction of syntactic structure,

o Speeding up the parser when using the prosodic information; the expectation is that pruning
out syntactic hypotheses that are incompatible with the prosodic pattern observed can both
improve accuracy and speed up the parser overall.
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8 Appendix
la. I'1 read 0 a 0 review 2 of 1 nasality 4 in 0 German.
1b. 10 read 2 a 1 review 1 of 0 nasality 1 in 0 German.
2a. Why 0 are 0 you 2 grinding 0 in 3 the 0 mud.
2b. Why 1 are 0 you 2 grinding 3 in 0 the 1 mud.
3a. Raoul 2 murdered 1 the 0 man 4 with 0 a 1 gun.
3b. Raoul 1 murdered 3 the 0 man 1 with 0 a 0 gun.
4a. The 0 men 1 won 3 over 0 their 0 enemies.

4b. The 0 men 2 won 0 over 1 their 0 enemies.
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Sa.
5b.
6a.
6b.
7a.
7b.

Marge 1 would 0 never 0 deal 3 in 0 any 0 guise.
Marge 0 would 1 never 2 deal 0 in 2 any 0 guys.
Andrea 1 moved 1 the 0 bottle 3 under 0 the 0 bridge.
Andrea 1 moved 3 the 0 bottle 1 under 0 the 0 bridge.
They 0 may 0 wear 4 down 0 the 0 road.

They 0 may 1 wear 0 down 2 the 0 road.
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Abstract

Spoken language systems for the near future will not
handle all of English, but, rather, will be limited to a
domain-specific sub-language. Accurate modeling of the
sub-language will depend on analysis of domain-specific
data. Since no spoken language systems currently have
a wide range of users, and since variability across users
is expected to be large, we are simulating applications
in which a large population of potential users can be
sampled. The data resulting from the simulations can be
used for system development and for system evaluation.
The application discussed here is the air travel domain
using the Official Airline Guide (OAG) reformatted in a
relational structure.

This study assesses the effects of changes in the simu-
lations on the speech and language of the experimental
subjects. These results are relevant to both the exper-
imental conditions for data collection and the design of
the human interface for spoken language systems. We re-
port here on five experiments: (1) the effect of longer in-
structions with examples vs. shorter instructious, using
our earlier data collection system, (2) a baseline experi-
ment using a functional equivalent of the data collection
effort at Texas Instruments (T1), (3) the use of a more

specific version-of-the scenario used in the baseline ex--

periment, (4) the use of a short, simple familiarization
scenario before the main scenario, and (5) in addition
to the short familiarization scenario, the use of a finite
vocabulary with rejection of sentences with extra-lexical
iterns.

Introduction

The data reported here are part of an endeavor whose
goal is to design an appropriate human-machine inter-
face by examining various parameters in a simulated in-
teraction involving air travel planning. The design of
the system is such that either a spoken language system
(SLS) or a simulation of one can be inserted between
the user and the relational database version of the Offi-
cial Airline Guide data for North American flights and
fares. In this way we can gather data for development
and evaluation of both the SLS and the user interface.

Perhaps the greatest source of variability in the system-

is that across subjects. Individuals differ greatly in their
language skills, in their problem solving skills, and in
their attention spans. It is therefore important to sam-
ple a variety of subjects from the relevant population.
Individuals are also very adaptable. In many cases, it
may be easier to rely on subject adaptability thaa to try
to find technological solutions. Bowever, the dimensions
along which humans might adapt are largely unknown
for spoken language interfaces. Thus, the simulations
provide us with a mechanismn to test experimentally var-
ious interface strategies that may be appropriate for SLS
technology as it develops.

We describe here five experiments aimed at answering
various questions about the interface. Qur first exper-
iment, the only one reported here that was not based
on a functional equivalent of the TI data collection sys-
tem, investigated the effect of a long set of instructions
with examples compared to a shorter set with no ex-
amples. The goal of this study was to investigate how
rauck one “poisons the data” by using such examples.
The next four experiments were based on either a func-
tional equivalent of the TI system, or a minor variation:

e To serve as a baseline experiment to compare our
results to those of TI, and to serve as a control for
the other experiments, we collected dxta in a fashion
that imitated the TI system as much as possible.

o To investigate the effects on yield that might result
when subjects interpret what a vague scenario might
mean, we modified the scenario to fill in details that
were unspecified in the original.

¢ To investigate the first session effect, which was
large in our earlier work, we used a simple, short
(about 5-minute) familiarization scenario.

o To investigate how well subjects might adapt to a
fixed vocabulary, we used a short familiarization sce-
nario, gave subjects a list of about 1000 words, and
gave error messages for utterances with words not
on that list.

Data Collection Conditions
Except for the first experiment, which was carried out

- before the functional equivalent of the T1 data collection
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system had been completed, our aim was to imitate as
well as we could the system used by TI for data collec-
tion. In particular, we have used the same data from
OAG formatted in the same relational structure; the
same tool for the “wizard™ (NLParse) and accompanying
NLParse grammar; the same relational database (Ora-
cle) and interface to NLParse; the same set of tools for
communication among subject, wizard, and transcriber;
the same subject and experimenter instructions; and the
same formatting of tables and other objects displayed on
the screens (controlled by Oracle). We used only one of
TT’s scenarios, planning a family reunion involving fam-
ily members of various types.

Our data collection differed from that of T] in a few
ways that we felt were either unavoidable or unimpor-
tant for the resulting data. We are aware of the follow-
ing differences: our A/D system uses a NEXT machine;
our push-to-talk mechanism writes out a time stamp for
push and for release (this allows us to calculate the time
spent speaking, waiting for an answer and thinking be-
fore making the next query, which the TI system does
not allow); instead of the color coding used by TI, we
use a “ready” prompt when the system is ready to ac-
cept speech, a “listening” prompt when the subject is
pushing the mouse button, and a “processing” prompt
after the subject releases the button and before the an-
swer is sent. We offered a free “DECIPHER” T-shirt to
participaats in an experimental session.

Data Analysis

Each session was timed from beginning to end, the train-
ing scenarios were timed, and the delay until the sub-
ject initiated the first utterance was timed. The num-
bers of words and utterances produced per session were
counted, as were the numbers of words and utterances
produced during the training scenario. A time stamp
was autornatically recorded each time the subject used
the push-to-talk button, each time a transcription was
sent, and each time a response was sent to the subject’s
screen. This allowed us to determine the average time
the subject took after receiving an answer and before
formulating a query (thinking time), the average time
the subject held down the push-to-talk button (speaking
time), and the average time it took the wizard and the
wizard’s assistant to send the transcription and database
response to the subject’s screen (subject waiting time).
The average number of words per utterance, the average
vocabulary size per subject, and the number of sentences
outside the restricted vocabulary used in the Fixed Vo-
cabulary Condition were counted. We also counted the
number of cancellations subjects used per session, and
the number of error messages sent. After the session, all
subjects filled out an eleven-item questionnaire designed
to assess their subjective impressions of the system and
their satisfaction with their interaction with the system.
Analyses of these measures were completed for the ten
subjects in each of the four conditions that were based
on the TI data collection system.

For the word counts, we used the .nli files (see [2}),
and used functions to reformat the data so that, for ex-
ample “845” would count as three words rather than
one. Other, similar changes were made to regularize the
spellings.

Condition 0: Long Instructions
This condition is the only one that is not based on the
T1 data -sllection system; it is based on the system de-
scribed in (1]. We describe it briefly here since the resuits
were part of the motivation for the two training condi-
tions described below.

This experiment tssted the eflect of subject instruc-
tions on the language produced by the subjects. Two
sets of instructions were used: one that included ten
grammatical and parsable utterances as examples, and
one that included no examples. In all other respects they
were identical. Based on previous work, we expected a
large cixct of experience with the system, so subjects
were asked to perform two tasks, and performance was
compared acroes the two tasks as well as between the two
sets of instructions. 208z We found a strong interaction
between the type of instructions given and the amount of
experience the subject had with the system; that is,on a
subject's first task, those who received long instructions
behaved like the more experienced, second-task subjects
on the measures used in the previous study. They also
used more complete sentences aand did not show the pat-
tern of short, choppy, telegraphic speech demonstrated
by the subjects who received a short set of instructions.
It is possible, then, to affect the speech the subject ad-
dresses to an SLS by providing examples. It is impor-
tant to note that the effects of longer instructions and
additional experience with the system were not additive:
new users appear to need either detailed instructions or
additional practice time but not both.

The data collected in this experiment was different in
important ways from data collected and reported by TI.
The sentences, especially those produced by subjects not
given examples, were shorter (an average number of 7.4
words per utterance compared to about 12 for the TI
data). However, due to the many differences between
this interface and that used by TI, it was impossible to
reliably attribute these differences to any specific causes.
We therefore designed a series of minor modifications of
the TI version, as described below.

Condition 1: TI Equivalent

The goal of the “TT" Condition was to establish that
our data collection system was a functional equivalent
of the TT system, and then to secve as a baseline for the
subsequent conditions. We tried to conform as closely as
possible to TI's methods, physical setup and materials.
In this condition, subjects were read a set of instructions
identical to the instructions used by TI, the task they
were asked to perform was one of the TI scenarios, and
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[ 11 [ SRI-TI |

No. utterances 26.2 23.5
No. words 305 298
Words/utterance 11.6 12.7
No. unique words/subj. | 83 81
No. unique words/cond. | 286 296
Time between utterances | 90 sec. | 89 sec.

Table 1: SRI-TI Condition Compared with TI Data

the wizard was familiar with NLParse and had practiced,
using the transcription and query data released by TI.

The data from our TI Condition seems to match TI’s
released data very well. As shown in Table 1, the various
measures made are all very similar.

Perhaps the most striking difference between TI's data
and SRI'’s in the TI Condition appeared in an analysis
of word frequency. We were astonished that the frequen-
cies were so different for “show” (75 occurrences in TI's
data vs. 8 in ours). Similar discrepancies showed up for
the words “me”, “nonstop” and “flights”. We then real-
ized that the sentence used by TI as an example demon-
strating the use of the mouse and the formatting of the
tables, “Show me all the nonstop flights from Atlanta
to Philadelphia”, had a profound effect on the result-
ing data (though, of course, these utterances from each
speaker were not used in the analysis). In our data col-
lection, we asked the subject to read the first sentence
of the scenario while we verified the recording procedure
and demonstrated the push-to-talk button.

Condition 2: Task Specificity

We found, in examining both data released by TI and
our own data in the TI Condition, that it was often hard
to tell how a subject had interpreted a given task, and
even which task was being performed. The data could
be more valuable if we could ascertain whether and how
well the subject completed the task. We also thought
that subjects would be more cooperative and the task
would be more realistic if they were concentrating on
solving the task rather than on exploring the limits of
the system. In addition, we suspected that some time
migh: be wasted while the subject tries to figure out
what the task is.

To eliminate the effect of individual interpretation of
the task and to standardize the task across all subjects,
we ran a “Specific Task” Condition. In this condition,
subjects were given the same instructions as in our TI
Condition. The task they were asked to perform, how-
ever, while structurally the same as the tasks performed
by-TI's subjects and by our own subjects in the TI Con-

dition, was more specific. Instead of leaving the inter-
pretation of certain aspects of the task to the subjects
(for instance, find a flight for a person with an “adven-
turous” lifestyle), we set explicit constraints (find an air-
plane that holds the fewest number of passengers). In
addition, instead of choosing any citi=s from the database
to complete the task, subjects were assigned the origin
and destination cities. Each of the ten subjects in this
condition used a different set of four cities, determined
randomly from the set of cities in the database. In all
other aspects, this condition was identical to the previ-
ous condition.

We found no significant differences on any of our mea-
sures between the subjects in our T Condition and our
Task Specificity Condition. It may be that any bene-
fits gained by subjects not being required to fill in the
details themselves were offset by the fact that assigning
random cities does not work as well as when subjects
pick the cities themselves. For example, several of our
subjects had difficulties because they did not realize that
Dallas and Fort Worth shared an airport. Subjectively,
however, it did appear that subjects completed the as-
signed task, whereas in the TI Condition, many subjects
gave up or quit before fulfilling the various parts of the
task required by the scenario. We are working to develop
objective measures of this subjective impression of the
“dialogue” quality of the collected utterances.

Condition 3: Familiarization
Our past data collection efforts showed a large effect of
user experience in human-human interactions and in ex-
perimental human-machine interactions [1]. In both con-
ditions, the more domain-experienced speakers produced
fewer words, fewer false starts and fewer filler words than
did the less-experienced speakers. In addition, subjects
elicited fewer error messages in their second scenarios
compared to their first. Further, the dramatic effect of
one sentence read by all subjects at T1 shows.just how
adaptable subjects can be, at least in an initial session.

In the “Familiarization Condition”, after reading the
same instructions as in the other conditions, the exper-
imenter stayed in the room with the subject and an-
swered any questions the subject had in finding a single
one-way flight between San Francisco and Dallas. The
experimenter responded to questions including those re-
garding the kind of requests the system could handle,
the kind of information in the database, and the push-
to-talk button. The experimenter also provided possible
explanations for any error messages the subject received
during the training scenario. The familiarization sce-
nario remained constant across all subjects, although the
scenarios that constituted the main task varied among
subjects as described in the Task Specificity Condition
above. The average length of a training scenario was
6.57 minutes.

Among the various conditions we ran, the largest ef.
fect by far was that of the familiarization scenario. As
shown in Table 2, subjects who used familiarization sce-
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No With

Familiarization | Familiarization
Task time 40 min. 23 min.
Utterances/Task | 24 17
Words/Task 276 146
Words/Utterance | 12.2 8.7
Format queries 25% 13%
Errors 3.9 1.2
Cancellations 38 1.6
Thinking time 46 sec. 34 sec.
Speaking time 8.2 sec. 6.9 sec.
Waiting time 42 sec. 39 sec.

Table 2: Comparison of Conditions with and without
Familiarization Scenario

narios took significantly less time to complete the main
task (23.2 vs. 39.9 minutes, p < .01) and used signif-
icantly fewer words to complete the task (276 vs. 146,
P < .01) than subjects in the other two conditions. The
difference between the number of utterances produced
by the two groups was not significant, however (24.4 vs.
172, p > .05), while the number of words per ut-
terance used by subjects in the training conditions was
fewer (8.7 vs. 12.2, p < .01). Subjects in the familiar-
ization couditions also received fewer error messages per
utterance produced (.07 vs. .13) and asked fewer ques-
tions concerning the meanings of table headings {13% of
all queries, compared to 25% for subjects with no famil-
iarization scenario).

Condition 4: Finite Vocabulary
Earlier work concerning the vocabulary used by sub-
jects and the percent of new words introduced in
each session suggested that expert human-machine users
could potentially adapt to a restricted vocabulary and
still maintain efficiency [1]. In order to test whether sub-
jects would adapt to a restricted voecabulary, we slightly
modified our system to accept only a limited vocabu-
lary from the subjects. The wizard’s assistant, instead
of being provided with a normal spell-checker, used a
spell-checker that contained only a subset of approxi-
mately 1000 most frequently used words, based on the
data released by TI in distributions 1-4 (prepilot data
plus NIST Release 1). Subjects were made aware of this
restriction in the instructions and were provided with a
list of acceptable words. If they used a word outside the

1 2 3 4
Unique

words/subject 81 89 {83 67
Unique
words/condition 296 | 344 {270 | 219
Extra-lexical items,

No. words 66 80 61 0

Extra-lexical items,
No. sentences 74 205 {138 | O

(percent sentences) | (31) | (81) | (87) | (0)
Vocabulary errors 0 0 0 3.8
Qther errors 3.7 142 118 {06
Task Time
(min) 37 143 |22 24

Table 3: Comparison of Condition 1 (SRI-TI), 2 (Task
Specificity), 3 (Familiarization Scenario), and 4 (Finite
Vocabulary).

vocabulary, they were sent the message: “You have used
a word outside the system’s vocabulary. Try rephrasing
your request.” In all other respects, this “Fixed Vocabu-
lary” Condition was identical to the Familiarization Con-
dition (i.e., subjects in this condition were given a famil-
iarization scenario and performed a constrained task).

If we compare the subjects who received a familiaz-
ization scenario but were unlimited in vocabulary and
those who received a familiarization scenario but were
limited to a 1000-word vocabulary, we find that the er-
ror messages received by the latter group for using out-
of-vocabulary items is highar. During the familiariza-
tion session, they received an average of 2.0 error mes-
sages of this kind, and an average of 3.8 messages of this
kind for the main task. When added to the other error
messages they received, this gave them a slightly higher
number of total error messages received than subjects
in the comparable but unlimited-vocabulary condition
(4.4 vs. 1.8). The mean number of error messages re-
ceived by the group was not, however, different from the
mean number of error messages received by subjects in
either of the non-familiarization scenario conditicns. In
addition, there is evidence for the adaptation of sub-
jects to a fixed vocabulary as indicated in Table 3. This
table indicates that with a short familiarization session
and consistent feedback one can dramatically affect the
pumber of unique words used by the subject, the num-
ber outside a fixed set, and the number of sentences with
such “extra-lexical” items, without increasing the total
time to complete the task. The discrepancies between
the pumber of “extra-lexical” items and the number of
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sentences in which they occur arise because some sub-
jects will use a given lexical item in many subsequent
sentences once it has “worked”.

Discussion

In addition to replicating the results released by TI, us-
ing a setup similar to TI’s, we have shown the effect of
altering various aspects of the experimental setup, in-
cluding scenario specificity, subject familiarization and
restricting the vocabulary.

We believe that our results indicate that we have suc-
ceeded in implementing a functional equivalent of the
TI data collection system. The one major exception to
this claim is the observed discrepancy in the word fre-
quency distributions. This discrepancy can be remedied
by avoiding any sample sentences from the domain while
instructing subjects.

In assessing scenario specificily, we found no differ-
ences on either yield measures (time to complete task,
utterances per task, words per task, etc.) or on quality
measures (error message rates, cancellation rates) be-
tween subjects in the unconstrained task condition and
those in the constrained (specific) task condition. In
light of this, one might argue for adopting specific sce-
narios on the basis of the benefits gained by knowing
subjects are interpreting the task the same way (in ef-
fect, are performing the same task) and by obtaining
data useful for both analysis of isclated queries and of
dialogue.

Our most significant results pertain to subject famil-
iarization. In two separate experiments using two very
different interfaces and procedures, we demonstrated the
impact of subject familiarization with the system: sub-
jects less familiar with the system produced longer ut-
terances, needed more time to complete the task, and
produced fewer utterances per subject hour. The time
to familiarize subjects with the system (5 to 6 minutes)
was short relative to the gains in subject efficiency (17
minutes saved on average in subject time to complete
task).

Our Fixed Vocabulary Condition showed that sub-
jects can adapt quickly to a restricted vocabulary with-
out increasing task time: subjects in the Fixed Vocabu-
lary Condition did not take longer to complete the task
or to plan each utterance than those in the unlimited-
vocabulary conditions, so the constraint doesn’t appear
to slow them down unnaturally or lower the yield of
the experimental session. It is worth noting that these
subjects showed significant improvement in the number
of out-of-vocabulary error messages received during the
main task (3.8 in 24.29 minutes) as compared to the
training scenario (2.0 errors in 7.27 minutes). This sup-
ports the position that subjects can adapt to using a
limited vocabulary. This result may be very important
in the development of scalable technologies that will fit
on a variety of platforms.

We found no systematic differences in the answers sub-
jects provided to the questionnaire we presented to them

after the session. The subjective experience of the sub-
jects in the various conditions, then, seems to have been
about the same.

The goals of designing an appropriate spoken language
system can sometimes conflict with the goal of collect-
ing data for evaluation of spoken database queries. That
is, some major causes of errors (e.g., out-of-vocabulary
items, out-of-domain queries) may disappear with a
small amount of either detailed instruction or subject
familiarization. However, we are convinced that it is
possible to find ways of coordinating the two endeavors.
For example, the needs of both dialogue analysis and
of query-answer pairs for evaluation can be met using a
more specific scenario; the needs of restricted vocabulary
can be met by providing consistent feedback; .and the
large effect of subject familiarization can be addressed
by spending a short time in the room with the subject
to answer questions as the subject works on a task.

We plan to continue these experiments to help us de-
sign an appropriate human-machine interface. In our
next set of experiments we will include a revised gram-
mar for NLParse that reduces the number of words the
wizard needs to produce by about 35% (on “cheapest”
constructions it can reduce the number of words to about
a quarter of the number that would be needed without
the modification). Other experiments we are planning
include the reformatting of tables sent by Oracle (the
high percentage of queries concerning the meanings of
various column headings indicate that much could be
done to improve the user interface in this area), and
some variations on the use of push-to-talk mechanism.
We will also be running repeat subjects to test the effect
of longer use of the system on the resulting data.
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ABSTRACT

We describe three analyses on the effects of spontaneous
speech on the recognition of continuous speech. We have
found that: (1) spontaneous-speech effects significantly
degrade recognition performance, (2) fluent spontaneous
speech yields word accuracies equivalent to read speech,
and (3) using spontaneous-speech training data can signifi-
cantly improve performance for recognizing spontaneous
speech. We conclude that word accuracy can be improved
by explicitly modeling spontaneous effects in the recog-
nizer and by using as much spontaneous speech training
data as possible. Inclusion of read-speech training data,
even within the task domain, does not significantly improve
performance.

1. INTRODUCTION

Recognition of spontaneous speech is an important feature
of database-query spoken-language systems (SLS). How-
ever, most speech recognition research has focused on
acoustic and language modeling developed for recognition
of read speech [1]. Read speech has been used extensively
in the past for both training and testing speech recognition
systems because it is significantly less expensive to collect
than spontaneous speech, and because the lexical and syn-
tactic content of the data can be controlled.

The muitisite data collection effort [3] has provided a chal-
lenging corpus for research and development in the Airline
Travel Information System (ATIS) domain. We have
observed a significant increase in word error rate compared
to the previous task domain, the read-speech naval
Resource Management (RM) task [2,6). Word error rates
for RM systems have typically been in the 5% range,
whereas ATIS word error rates have exceeded 10% [4], for
comparable perplexities.

The speaking style typically exhibited in the RM domain
had a very consistent rate and articulation, within and
across sentences, and across speakers. There were no dis-
fluencies, such as word fragments, hesitations, or self-edits,
since utterances containing these effects were removed
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from the corpus. The utterances tended to be short and
direct (3.3 seconds long, on average). No pause fillers (uh.
um), false starts, repairs, or excessively long pauses
occurred. The speakers were able to concentrate on speech
production, rather than query formation or problem solv-
ing. Furthermore, the training and testing texts were gener-
ated using a fixed vocabulary, and with the same. known
language model, which quite adequately represented the
source and target languages.

The speaking style typically exhibited in the ATIS domain
differs from that in the RM domain in all of the above
aspects. The speaking rate is highly inconsistent, within
utterances, across utterances within a session. and across
sessions and speakers. The articulation is highly variable.
with stressed forms of function words and reduced forms of
content words typically not observed in read speech. The
sentence lengths vary widely and are typically longer than
RM sentences (7.5 seconds long. on average). Some words
in ATIS sentences may not exist in the recognizer’s lexi-
con, and an appropriate language model must be devel-

oped.

Most important, however, ATIS speech contains spontane-
ous effects and disfluencies: filled pauses, stressed or
lengthened function words, false-starts and self-edits. word
fragments, breaths, long pauses, and extraneous noises
such as paper rustling and beeps. Data collected using sys-
tems containing automatic speech recognition and natural
language components contain frequent occurrences of
hyperarticulated words, elicited by the subjects in an
attempt to cvercome recognition or understanding errors
{51. Additionally, the data nave been collected in normal
office conditions (rather than in a soundproof booth). and
recording quality and conditions vary across sites [3].

2. ERROR ANALYSIS

We begin by analyzing the errors that occurred in the Feb-
ruary 1991 evaluation set of 148 Class-A sentences, for
which our word error rate exceeded 18%. These sentences
are examined because they are believed to be a particularly
difficult sample of ATIS speech.




Phonetic alignments were automatically generated corre-
sponding to both the reference and recognized word strings,
and each utterance was listened to very carefully. We com-
pared the acoustic and language model scores, and made a
subjective judgment as to the likely source of the error (the
acoustic model, the language model, the articulation quality
of the segment, or other effects such as breaths, out-of-
vocabulary words. or extraneous noise).

We found that 30% of the errors (Table 1) could be attrib-
uted to poor articulation or poorly modeled articulation
(usually reductions, emphatic stress, or speaking-rate varia-
tions); 20% were due to out-of-vocabulary words or poor
bigram probabilities; 20% were due to unmodeled pause-
fillers (uh, um, breaths). The remaining 30% could not be
attributed to any of the above, but were probably due to
inadequate acoustic-phonetic modeling.

We see that 70% of the errors are due to effects observed in
the ATIS domain, but not in the RM domain. If these errors
were removed, we would approach an error rate typically
seen in a comparable RM system (with a perplexity 60
word-pair grammar).

Corpus Cause for Error Portion
Poor Aruculation 30%
ATIS only
Vocabulary and Grammar 20%
Pause Fillers 20%
ATIS and RM | Other 30%

Table 1: Summary of error sources for the Class-A
Feb91 ATIS evaluation set (148 sentences).

3. READ VS. SPONTANEOUS SPEECH

To determine the impact of spontaneous versus read speak-
ing styles on recognition performance given a fixed training
condition, we constructed a recognition experiment with
two test sets. The first set contained spontaneous speech
utterances; the second set contained read versions of those
same utterances, given later by the same subjects.

The training data consisted of RM. TIMIT, and pilot-corpus
ATIS utterances (with the read-spontaneous and spontane-
ous test data held out). This left rather little ATIS-specific
data for training, aimost none of it spontaneous. The recog-
nition was run without a grammar (perplexity 1025) to
remove any corrective effects of the grammar, so that only
the acoustic effect of the spontaneous speech could be eval-
uated. The spontaneous test sentences were categorized as
either fluent or disfluent based on the existence of special

markings in their corresponding SRO® files.

We found that the pnmary difference in error rates between
the read and spontaneous test sets was due directly to disflu-
encies in the spontaneous speech (Table 2). Nondisfluent
spontaneous speech had the same error rate as read speech.
The disfluencies include pause-fillers, word fragments.
overly lengthened or overly stressed function words. self-
edits, mispronunciations, and overly long pauses. This list
of disfluency types is derived from the special markings
used in the SRO transcniptions. The observation that the
nondisfluent spontaneous-speech error rate approaches the
read-speech error rate is consistent with the fact that the test
speech much more closely resembles the traimng data. The
utterances in the training data were fluently and consistently
articulated. just as was the nondisfluent spontaneous test

utterances.
R
Read 24} 33%
Spontaneous 24] 43%
Spontaneous - Disfluent 97 56%
Spontaneous - Fluent 144 32%

Table 2: Error rate versus speaking style. Read speech
and fluent spontaneous speech have roughly equivalent
€ITor Tates.

The breakdown of error rate versus disfluency type (Table
3) shows that a significant portion of the errors were due 10
filled pauses, long pauses, lengthenings, and stress. Sen-
tences with these disfluencies had twice the word error rate
of fluent speech. The filled-pause errors happened because
there were no models for breath/uh/um events in this partic-
ular recognizer’s lexicon. The stress and lengthening errors
happened (most likely) because of the lack of sufficient
observations of these events in the training data. and
because of the lack of exphcit models for these effects. The
long pauses usually caused insertions within the pause
regions neighboring the phrase-initial and phrase-final
words.

From these observations, we conclude that more training
data containing these effects would improve the match
between the acoustic models and the spontaneous test
speech, and therefore would improve the recognition per-
formance. Furthermore, these effects should be explicitly
modeled in the recognizer’s lexicon, once sufficient training
data are obtained. However, this process depends on the
reliability of the SRO labeling across sites, which tends to
be subjective and inconsistent.

*The SRO transcription contains a detailed
description of all the acoustic events occummng in
an utterance.

A-42




" Disfluency Number of Disfluency
Type Sents Causes Error
Self-Edit 7 71%
Filled Pause 24 92%
Long Pause 17 94%
Lengthening 36 81%
Stress 22 59%
Mispronunciation 2 100%
Fragment 5 100%
Table 3: Number of sentences afflicted with each dis-

fluency type, and the percentage of occurrences where the
disfluency causes an error.

4. TRAINING DATA VARIATIONS

Further evidence for the importance of modeling spontane-
ous-speech phenomena is found by manipulating the con-
tent of the training data sets that are used for acoustic-
phonetic modeling. In this experiment, we compare the per-
formance of spontaneous-speech recognition for different
combinations of read, spontaneous, ATIS, and non-ATIS
training subsets.

The training subsets (Table 4) consist of the standard RM
and TIMIT training data, and read and spontaneous subdi-
visions of all the ATIS and MADCOW data available as of
October 1, 1991. The “Breaths” corpus refers to an inter-
nally collected database of inhalations and exhalations,
used to train a breath model, which is allowed to occur
optionally between words during recognition. Much of the
ATIS-read data were aiso collected internally at SRI.

Corpus Size
ATIS-Read 7932
ATIS-Spentaneous 6.745
TIMIT 4,200
Resource Management 3.990
Breaths 800

Table 4: Training data subsets, which are combined
in various ways to determine the impact of read and
spontaneous training data on recognition of spontaneous

speech.

Recognition was conducted using a development test-set of
447 spontaneous MADCOW utterances [3). with a perplex-
ity 20 bigram grammar trained on all the available sponta-
neous speech transcniptions (roughly 10,000 sentences). All
of the experiments outlined below use discrete-distnibution
hidden Markov models (HMMs), and every training set
combination includes the 800 breath utterances.

Using all the available ATIS and MADCOW data yieided a
system with a word error rate of 9.6% (Table 3). Using only
spontaneous ATIS speech reduced performance by only 6%.
to 10.2% word error. Training with a roughly equivalent
quantity of read ATIS speech increased the error rate signuf-
icantly, by 58% to 15.2%. Thus suggests that having trarung
data thar are consistent in speaking mode with the test data
can significantly improve performance. However, the effect
of lexical and phonetic coverage in the training sets might
be a factor in causing this performance difference. This
issue 1s discussed in Section 5.

Training Set Size Error
ATIS-Read 8732 ] 152%
ATIS-Spontaneous 7.545 10.2%
ATIS-All 15,477 9.6%

Table5:  Trainng set vanations for ATIS-only systems.
showing how speaking-mode-consistent data improves per-
formance.

We also look at the impact of using non-ATIS read speech
for additional training data (Table 6). Using successively
more training data gives the expected result, an improve-
ment in performance. However, when using all the available
data (RM, TIMIT, ATIS and MADCOW), the performance
matches that of the system trained exclusively on ATIS and
MADCOW data. Furthermore, the performance of the sys-
tem trained using all the avaiiable read speech (16,922 sen-
tences) performed much worse than the system trained only
on spontaneous speech (7.545 sentences).

Training Set Size Error
TIMIT 5.000 269%
TIMIT + RM 8,990 205%

TIMIT + RM + AT1S-Read
TIMIT + RM + ATIS-All

Table 6: Training set vanations using non-ATIS data.
showing a drop in the error rate when AT1S-read data are
added, and a further drop when ATIS-spontaneous data are
added.

16.922 14.6%
23,667 9.6%
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We can conclude from these experiments that having speak-
ing-mode-consistent training data is more 1mponant than
simply having a large quantity of training data. However,
we cannot be certain that the phonetic content of the ATIS-
spontaneous training set matches the development set better
than the ATIS-read training set. That issue is addressed in
Section 5.

We compared the errors of two different recognizers used
on the same test set of spontaneous speech. Both recogniz-
ers were trained on a comparable number of utterances, but
one recognizer was trained on read speech only (TIMIT+R-
M+ATIS-Read), and the other on spontaneous speech only
(ATIS-Spontaneous). We found that substitutions of one
function word for another form a significant portion of the
errors in both test sets, and in roughly the same proportions.
However, there were significantly fewer substitutions of
content words for other content words for the recognizer
trained on spontaneous speech than for the recognizer
trained on read speech.

Similarly, the recognizer trained on spontaneous speech
manifested significantly fewer errors in substitution of a
pause filler for a function word. Homophone errors, which
can lead to understanding errors, formed a significant por-
tion of the errors in the recognizer trained on read speech,
although almost none of these appeared for the recognizer
trained on spontaneous speech. We believe that this is
because many words that can be homophonous in read
speech (“for” “four” and “to” “two”, for example) are no
longer homophones in spontaneous speech (“fer” “four”
and “tuhn “tWO”).

5. Phonetic Coverage Analysis

One potential reason for the dramatic performance varia-
tions could be that the phonetic content of the development
test set is better covered by the ATIS-Spontaneous subset
than by the ATIS-Read subset. In this section, we attempt to
disprove that theory, giving further strength to the argument
that speaking-mode consistency is the primary factor affect-
ing performance.

We reason that the more detailed (more context-Gependent)
acoustic-phonetic models there are available for testing, the
more adequate the training data have been in representing
this dimension (the better the phonetic coverage). There-
fore, for this analysis, we determine the average context
level (or detail) of HMM states that each frame of test data
visits during recognition. The average is computed by
assigning an integer-valued number to each mode! type
(increasing as context leve] increases), then computing the
percentage of all frames of data visiting states correspond-
ing to a particular level of context.

The series of context-dependent model types used in the
DECIPHER system is listed in Table 7. A model with a par-

tcular context leve! will be generated by the DECIPHER
trainer if there are sufficient data 1o train that model.

Mode! Type Context Level

—

Monophone

Left-general biphone

Right-general biphone

Left biphone

Right biphone

General triphone

Left-general triphone

Right-general triphone

Tnphone

Nl |w] L bW W] TN

Word-specific

Table7:  Assignments of an integer-valued context
level to each context-dependent madel type. Models
with increasing detail are assigned hugher context level
values.

The expectation is that the higher the average context level
encountered during recognition, the better the performance.
This trend is indeed captured in Table &, where the system
with the least task-specific training data (TIMIT) had the
least average context level (and the lowest performance).
and the system with the most training data (TIMIT+RM+
ATIS-All) had the highest average context level (and the
fughest performance).

The important point is that the average context level of the
best-trained read speech system (TIM!T+RM+ATIS-Read)
was roughly equal to that of the best spontaneous-only sys-
tem (ATIS-Spontaneous), but the error rate was signifi-
cantly higher (14.6% versus 10.2%. respectively). This
suggests that although models of equivalent detai! are being
used for recognition, the performance difference is due to
the spontaneous speaking mode of the training set. which 1s
consistent with the speaking mode of the test set.
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Training Sets EER’;:Z lei:’l“
TIMIT+RM+ATIS-All 9.6% 6.31
ATIS-All 9.6% 6.26
ATIS-Spontaneous 10.2% 6.03
TIMIT+RM+ATIS-Read 14.6% 6.14
ATIS-Read 15.2% 5.96
TIMIT+RM 20.5% 5.06
TIMIT 26.9% 4.56

Table 8: Context level versus word error, indicat-

ing that despite similar model detail {context level), the
spontaneous-speech-trained system significantly out-
performs the best read-speech-trained system.

6. CONCLUSION

These studies have convinced us of the importance of using
as much spontaneous speech material as possible in training
our system. Furthermore, we have found that spontaneous
speech effects can significantly degrade recognition perfor-
mance. although fluent spontaneous speech yields word
accuracies equivalent to those of read speech.

Word accuracy can be improved by using as much sponta-
neous-speech training data as possible, and by explicitly
modeling such effects in the recognizer’s lexicon (such as
optional interword breath and pause-filler models). Inclu-
sion of read-speech training data did not significantly
improve performance. given that the phonetic coverage of
the traimung sets were roughly equivalent.
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Abstract

DECIPHER is SRI's HMM-based speaker-
independent continuous speech recognition system. DECI-
PHER performs well on the speaker-independent DARPA
resource management task, as described in last year's
ICASSP Proceedings {10]. To determine whether
speaker-specific acoustic and phonological adaptation can
further improve performance, the current paper describes
DECIPHER's performance on a speaker-dependent task.

1. Introduction

The Speech Research Program at SRI International
has designed and implemented several speech recognition
systems in the last six years. SRI's current large-
vocabulary, continuous-speech system, DECIPHER, is
based on 2 hidden Markov model (HMM) approach and
was designed to achieve high word accuracy in a speaker-
independent mode. It has been trained and tested on
DARPA’'s Resource Management database [9]. The
DECIPHER system was described at last year's ICASSP
meeting [10]. That paper presented results showing that
speaker-independent recognition performance could be
improved by incorporating certain kinds of linguistic
knowledge into the Markov mode! framework, including
cross-word coarticulatory modeling and detailed modeling
of phonological variation.

This paper presents the results of a series of experi-
ments that tested acoustic and phonological adaptation of
the DECIPHER system to the pronunciations of a single
speaker in a speaker-dependent task.

2. The DECIPHER System

The DECIPHER system uses an HMM framework
similar to that used in a number of other systems 2, 7,
8]. The overall structure of such a system is well
deseribed in [7). The overall structure of SRI's DECI-
PHER system is shown in Figure 1.
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DECIPHER's front end samples an analog acoustic
signal 16,000 times per second after passing the signal
through a 6.4 KKhz low-pass, anti-aliasing filter with 0.95
pre-emphasis. Signal analysis starts with a 512-point
discrete Fourier transform (DFT) calculated every 10 msec
on a 25.6 msec Hamming window. Four discrete acoustic
features are calculated every 10 msec. The features are
based on a 13-dimensional cepstral transform of the loga-
rithms of the energies in 25 overlapping filters (approxi-
mately equally spaced on the mel scale} in the range from
100 Hz to 6400 Hz. An optional noise-robust spectral esti-
mation process is described in [6] in this volume.

speach
signal

FIGURE *: The DECIPHER System

The phonetic models in the DECIPHER system are
discrete density 3-state hidden-Markov models. There are
four discrete densities per state, one for each of the four
acoustic features produced by the front end. Weord
models are directed graphs of phonetic models {combining
context-independent and context-dependent phonetic
models). The lexical graph for a vocabulary item is gen-
erated by the application of a set of phonological rules to
a baseform pronunciation (similar to previous efforts at
modeling multiple pronunciations {4]). The modeling of
multiple pronunciations in the DECIPHER system differs
from previous efforts in two important respects:

(1} A new technique for developing phonological rule sets
was used, with the goal of maximizing the coverage
of the pronunciations found in a corpus of speech
while minimizing the size of networks.




(2] A new algorithm was used to estimate the probabili-
ties of alternate pronusciations. The new algorithm
defines sub-word units which can share training data
based on equivalence classes of nodes.

These two techniques are described in the following two
secticas.

3. Developing Phonological Rule Sets

Previous efforts to model muitiple pronunciations of
words have suffered because many new parameters were
introduced which had to be estimated with a fixed
amount of training data. The approach to rule set
development SRI uses has the goals of maximizing the
coverage of observed forms in a corpus of speech while
minimizing the size of the networks, and therefore minim-
izing the number of parameters which need to be
estimated.

A number of software tools were developed which
allow the measurement of the coverage of pronunciations
in a corpus as well as overgeneration (generation of
pronunciations not used), both for a full rule set and for
the individual rules in a rule set. These tools can be used
to optimize the definition of the contextual constraints of
individual rules, as well as the choice of rules to include in
a rule set.

The development of phonological rule sets proceeds
as follows:

[o} Start with a lexicon of base forms, a corpus of
pronunciations, and (optionally) a phonological rule
set (i.e., we can start with an existing rule set and
refine it, or start with just baseforms).

[1] Measure coverage of output forms (resulting from the
application of current rules, if any, to baseforms) on
observed pronunciations. Get diagnostic information
on uncovered pronunciations.

[2] Write rules to cover pronunciations.

[3] Measure coverage and overgeneration of individual
rules. Analyze and refine contextual specifications of
rules based on individual rule diagnostics.

[4] Repeat from step 1 to achieve high coverage rule set.

Using the method outlined above, we have been able
to develop a phonological rule set with significantly higher
coverage and significantly lower overgeneration than rule
sets developed by more traditional methods both at SRI
and elsewhere {3].

4. Estimating the Probabilities of Alternative
Pronunciations

Previous efforts to model multiple pronunciations of
words have suffered because the unlikely pronunciations
(not previously modeled) caused false alarms. This was a
problem because the systems lacked accurate estimates of
the probabilities of the many pronunciations modeled.
Achieving accurate estimates is difficult because current

databases for training recognition systems have too few
occurrences of all but the most frequest words to make
accurate estimates.

In order to reliably estimate pronunciation probabili-
ties for words which don't happen frequently enough to
provide adequate training dati,”it is necessary to tie
together sub-word units which do happen frequeatly.
Thus, reliable probabilities can be estimated for these
sub-word units, which can then be concatenated to form
estimates for word pronunciations. Because exvended con-
text can play an important role in determining the allo-
phonic form of a segment in a word, we want to tie
together the largest units possible that have adequate
training data, in order to capture the greatest amount of
contextual information. We have developed an approach
which attempts to automatically determine the best
grouping of sub-word units into node-equivalence classes
for common training.

In the DECIPHER system, the training of pronuncia-
tion probabilities is incorporated into the training of the
HMM models using the forward-backward algorithm.
The forward-backward algorithm provides estimates of
the number of transitions for each arc at the end of each
iteration through the training data. The estimated tran-
sitions for arcs which correspond to arcs in pronunciation
networks are used to reestimate pronunciation probabili-
ties allowing arcs to share training samples when they
occur in the same node-equivalence class, as defined above.

We have shown improvements in speaker-
independent performance using the rule set development
and node-equivalence class training techniques outlined
above [10]. The next section reports the evaluation of
these techniques on a speaker-dependent database.

5. Speaker-Dependent Phonology

A set of experiments were performed in which
pronunciation models were adapted to individual speak-
ers. Initially, each speaker started with a set of pronunci-
ation networks which resulted from the application of a
phonological rule set, developed using the method
described above, to a set of baseforms. The mean number
of pronunciations represented per word with these net-
works was approximately 35. These networks were then
trained separately for each speaker in the speaker-
dependent test set. The training set for each speaker
included 600 read sentences (the DARPA speaker-
dependent resource management training set). Two itera-
tions of the forward-backward algorithm were run, and
the node-equivalence class algorithm referred to above was
used to estimate speaker specific pronunciation probabili-
ties for these networks. The networks were then pruned
by removing low probability arcs, using an algorithm that
includes constraints to prevent the creation of discon-
nected components of word networks and to avoid the
creation of word models which can't connect to other
words due to cross-word phonological constraints. In
addition, node types with less than a specified minimum
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number of training instances were constrained so that
only the most likely arc was left after pruning.

These pruned speaker-dependent word networks had
an average of approximately four pronunciations per
word. An additional two iterations of the forward-
backward algorithm were then run in order to train the
acoustic HMM models with the pruned speaker-dependent
word networks.

Tests were run with the DARPA 1000-word
resource-management database using both the DARPA
February 89 speaker-dependent test set and the 100-
speaker development set. The DARPA perplexity-60
word pair grammar was used. Results are shown in Table
1. The single networks were derived by pruning out all
but the single, most likely, path in all of the word net-
works after training pronunciation probabilities using the
node-equivalence class training algorithm. The multiple
pronunciation networks were pruned, as described above,
until there were ar average of approximately four pronun-
ciations per word. Table I compares performance using
networks with pronunciation probabilities based on a
speaker-independent training set and a speaker-dependent
training set. (Only the training and pruning of pronunci-
ation networks was varied for these runs - in all cases the
acoustic HMM models were trained speaker-dependently.)
Percent word correct was measured as

tnserlitions 4 deleltons 4 substilulions
total

1 —

where tolal = number of words in the correct senlences

phonological training | networks | dev set | Feb 89 set
SI single 97.5 97.0
SI muitiple 87.6 97.4
SD single 97.6 97.4
SD multiple 97.8 97.7

Table I: Speaker-dependent phonology.

As can be seen in Table I, a reduction in error rate
of 12% was achieved for one test set and 23% for another
test set going from speaker-independently determined sin-
gle most-likely pronunciations to speaker-dependently
determined multiple pronunciations. It can be seen that
part of that gain can be achieved with speaker-specific
adaptation of pronunciation networks, and part with the
representation of multiple pronunciations. In ail four
cases showr, goin; from single pronunciations to multiple
pronunciations improved performance, and going from
speaker-independent to speaker-dependent phonological
training improved performance.
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8. Discussion
The results shown bere suggest that:

{1} Speaker specific phopological training can improve
recognition performance, both for single and multiple
pronunciation systems.

[2] Multiple pronunciation models can improve the per-
formance of a speaker-dependent system.

In both cases, the improvements observed were small,
but consistent. A larger speaker-specific training set
would be likely to improve the results reported here.
With a larger training set, bushier word networks could
be used while maintaining the accuracy of the estimates of
pronunciation probabilities, as well as the estimates of the
acoustic parameters of the HMM models.

All the results presented in this paper are based on
experiments that both trained and tested the DECIPHER
system on carefully collected, read speech. In the future,
we intend to evaluate these techniques on gosl-directed,
spontaneous speech. These techniques are iikely to
become more important when DECIPHER is used with
spontaneous speech where there is significantly increased
in phonological reduction and deletion. [1,5].
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ABSTRACT

The CSR (Connected Speec.: Recognition) corpus represents a
new DARPA speech recognition technology development initis-
uve 10 advance the state of the art 1n CSR. This corpus essentially
supersedes the now old Resource Management (RM) corpus that
has fueied DARPA speech recognition technology development
for the past S years. The new CSR corpus supports research on
major new problems including unlimited vocabulary, natural
grammar, and sponaneous speech. This paper presents an over-
view of the CSR corpus, reviews the definition and development
of the “CSR pilot corpus”, and examines the dynsmic chalienge of
extending the CSR corpus to meet future needs.

OVERVIEW

Common speech corpus development and evaluation
received major emphasis from the very beginning of the
DARPA speech recognition program. At that time, a set of
commeon corpora were defined 1o serve the needs of the
research community. This resulted in the development of
the TIMIT speech corpus. which was collected from a large
number of subjects and intended to support basic research
in acoustic-phonetic recognition technology. The Resource
Management (RM) corpus. collected from fewer subjects
but representing an application of interest to DARPA, pro-
vided the greatest focus of interest in technology through-
out the research commuruty. In the course of R&D using
these two corpora. the first serious research and advances
toward speaker-independent speech recognition were
achieved.

Although the RM corpus served its intended purpose well,
technology advances came to make its limitations painfully
obvious. The language was artificial and limited, the speech
was read and therefore unnatural, and the corpus com-
pletely avoided the central issue of understanding the
meaning of the spoken utterances. In response to these lim-
1tations and to rapid advances in the performance of speech
recogmnition technology on this RM task. a new research ini-
tiauve was formed by combining speech recognition and
natural language understanding tasks u a spoken language
system (SLS) program.
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The SLS program took shape with the defirution of the Air-
line Travel Information System (AT1S) task. a database
query task which supports research 1n both speech recogni-
ton and natural language. The ATIS corpus (corpora) is
currently being collected to provide the experimental data
for developing SLS technology. Ttus ATIS corpus extubits
several desirable features regarding the speech recogrunion
problem that were found lacking in the RM corpus. These
features are namely the use of spontaneous goal-directed
speech and the consequent use of a narural grammar and an
open unrestncted vocabulary.

Although the ATIS corpus provides the kind of speech data
desired by the speech recognution research commuruty and
required to address important problems in the application
of speech recognition to real tasks. there is one unfortunate
shortcoming of this corpus. This is that the cost and effort
of collecting the data 1s too great to suppor the massive
data requirements for advances in speech recognution tech-
nology. Some way of improving the efficiency and produc-
tivity of data collection was needed in order to support
further .Jvances in speech recogrution technology. This
need was the pnimary mouvation for the creation of the
CSR research initiauve and its related CSR corpus.

The CSR research itiative. along with the CSR corpus
development effori, was created in order to provide better
support for advances in the siate of the art in large vocabu-
lary CSR. The pnmary focus in the CSR irutative has been
on the design and development of a CSR speech corpus
which is required to fuel the research and through which
the research might be productively directed. Pnmary objec-
tives of the CSR corpus have been to mncrease the realism
of the speech data and at *he same time to maximize the
efficiency of collecting that data. Efficiency has been
viewed as of paramount importance because it is generallv
believed that significant advances in speech recognituon
technology will require more comprehensive models of
speech and correspondingly more massive quanuties of
sp2ech data with which to train them.

Janei Baker was the pnncipal champion and designer of the
CSR corpus. working as the chair of a CSR corpus design
commuttee. This committee dealt with a large and diverse
set of research interests and corpus needs. which made the




task of designing a satisfactory corpus extremely difficuit.
For example, the desire to collect spontaneous speech was
1n direct opposttion to the need to make corpus develop-
ment efficient (because spontaneous speech requres a gen-
erally painstaking and expenssve transcription task.
whereas read speech can be transcribed far more efficiently

and even largely automatcally). '
Major Corpus Design Decisions

* Read speech versus spontaneous speech: On the
1ssue of spontaneous speech, it was decided that the
majonty of the corpus (and in particular the majonty
of the training data) should be read speech. for eco-
nomic reasons. whereas the majonty of the test data
{which compnses a small fraction of the total data)
should be spontaneous speech. The reason for these
decisions is that it was felt that large amounts of read
speech would provide greater training benefits than
smailer amounts of spontaneous speech. while using
spontaneous speech for tesung would better validate

the technology for a relatively small increase in cost.

* Prompting text: Probably the most significant deci-
sion regarding the CSR corpus was the decision to
work ingally with the Wall Street Journal (WSJ).
This decision was influenced by the richness of the
WSJ language and by the existence of a preexisting
and very large (50 million word) corpus of WSJ text
(as part of the ACL-DCl effont). sll of the read
speech data is currently being collected using
prompts denved from the WSJ. The spontaneous
speech data 1s being collected using a news reporting
dictation paradigm that simulates the WSJ dictation

SCCl’la.\'lOA2

* Verbalized punctuation: In dictation. which is the
nominal target application for the CSR technology
development effort. dictation users typically say
punctuation such as “comma” and “period” 5o as to
aid in the proper punctuation of the dictated docu-
ment. Therefore. in order to improve the vensimili-
tude of the CSR corpus, a strong opinion was voiced
that such verbalized punctuation (VP) be included in
the prompung text. Opposed to this view was the

1. The design of the CSR pilot corpus 1s descnbed
in detail 1n the paper by D. Paul and J. Baker in
this workshop’s proceedings entitied “The Design
for the Wal! Street Journal-based CSR Corpus™.
2. The spontaneous speech data collection effort 1§
described in detail in the paper by J. Bemstein and
D. Danielson in this workshop's proceedings enti-
tled “Spontaneous Speech Collection for the CSR
Corpus.
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opinion that such predetermined VP may not repre-
sent realisttic VP, may hmit research on automatic
punctuation, may restnict the task and perplexity,
may unduly burden the corpus with VP words. and
may present a difficult and aruficial reading task io
users. As a result, a compromise positiion was taken
in which half of the corpus was collected in VP mode
and half in non-VP mode.

Speaker-independence: The CSR corpus. although
directed pnmanly toward speaker-independen! rec-
ogrution, also suppons research into speaker depen-
dent recogrution. Approximately half of the piict
corpus 1s dedicated to speaker-dependent work

Microphone independence: The pnmary microphone
1s the traditional Sennheiser model HMD-414 In
addition, ail data were collected also with a second-
ary microphone. Previously. this second mucrophone
was a single far-field pick-up microphone, such as
the desktop Crown mode! PZM-6FS. The CSR pilot
corpus represents a departure from this practice and a
first attempt at true microphone-independent recog-
nution (in much the same spint as speaker-indepen-
dent recogninon) by using one of many different
microphones for the altemnate (secondary) speech
channel.

Transcription: For the CSR pilot corpus. the ongmnal
source text was preprocessed to produce a suring of
words that represented as well as practical the stnng
of words that would resuit from reading the source
text. Thus word string was then presented to the sub-
Ject as the prompung text. Thss approach provided a
very efficient transcnption mechanisni, because the
promptng text could automatically be used as the
transcription (except when the subject made errors in
reading). Also, the language model. although per-
haps a bit unnatural to the extent that the prompt
string doesn'’t represent the staustics of the true lan-
guage model. can be more easily and comprehen-
sively estimated by preprocessing large volurnes of
text rather than by transcnibing relanvely small
amounts of speech data.

The CSR Corpus Coordinating Committee

The charter of the CSR Corpus Coordinating Commuttee
(CCCC) is to coordinate CSR corpus development and to
resolve issues which anse in CSR corpus development and
evaluation. There are currently 12 members of the CCCC.
namely:

Janet Baker, Dragon
Jordan Cohen. IDA
George Doddington {chairman)




Francis Kubala. BBN
Dave Palleu, NIST
Doug Paul. Lincoln Labs
Mike Phillips. MIT
Michael Picheny, IBM
Raja Rajasekaran, T1
Xuedong Huang. CMU
Mitch Weintraub, SR1
Chin Lee, AT&T

Thus commuttee was formed at the SLS coordinating com-
mittee meeting in October 1991. Since that ime the com-
mittee has met ten times. mostly via teleconference. CCCC
activities have included:

+» Defimition of procedures for microphone gain adjust-
ment and calibration.

* Definition of procedures for transcribing the speech
data.

» Monitoring progress in speech data collection and
transcription.

* Definition of the data distribution schedule and for-
mat.

* Definition of procedures for evaluation of vocabu-
lary/speaker adaptive systems.

* Definition of procedures for scoring.

« Definition of recommended baseline performance
evaluations.

The CSR pilot corpus

One of the primary mouvations for creating the CSR task
and corpus was to provide a sufficiently large corpus of data
to properly support advances in speech recognition technol-
ogy. This implies a very large effort, with many hundreds of
hours of speech data being collected. Given the massive
effort required, and appreciating the untried nature of many
of the corpus parameters, it was decided that a pilot corpus
should be collected first to determuine the correctness of the
many corpus design decisions and to allow modifications of
these as necessary.

The CSR pilot corpus is descnibed in a companion paper in
these proceedings entitled “The Design for the Wall Street
Journal-based CSR Corpus” by D. Paul and J. Baker. This
corpus provides for the development and evaiuation of both
speaker-independent (SI) and speaker-dependent (SD) rec-
ogrution. It uses the now-standard DARPA corpus approach
of providing a three-part corpus: speech data for training
the speech recognition system (“TRAINING'™). speech data
for developing and optimizing the recognition decision cri-
tenia (“DEVELOPMENT TEST"). and speech data for per-

forming the formal performance evaluation
(“EVALUATION TEST™).

The CSR February 1992 dry run evaluation

The recommended baseline performance evaluauons were
defined by selection of training data set(s), testing data
set(s), recogrution conditions (vocabulary and language
model), and sconng conditions. In the course gf discussion
on these issues 1t became clear that consensus was not pos-
sible on definition of a single set of evaluation conditions.
This was in addition to the disunct differences between
speaker-dependent (SD) and speaker-independent (SI) evai-
uation data and conditions. Some committee members felt
that there should be no constraint on training matenal. to
allow as much freedom as possible to improve performance
through training data. Others believed strongly that calibra-
tion of performance improvement was paramount and there-
fore all sites should be required to use a single baseline set
of training data. In the end, the committee was able only to
identify a numnber of different trairung and test conditions as
“recommended” alternatives for a baseline evaluaton.

For training the recommended S! training corpus compnsed
7240 utterances from 84 speakers. The recommended SD
traimung corpus compnsed the 600 traimng sentences for
each of the 12 SD speakers. For the large-data speaker-
dependent (LSD) training condition. the recommended SD
traning corpus comprised the 2400 traiung sentences for
each of the 3 LSD speakers.

For testing there were a total of 1200 SI test utterances and
1120 SD test utterances. These data compnised. simularly
and separately for SI and SD recogruuon. approximately
400 sentences constrained to a 5000-ward vocabulary, 400
sentences unconstrained by vocabulary, 200 sentences of
spontaneous diciation, and these 200 sentences as read later
from a prompting text.

The vocabulary and language models used for the above-
defined test sets were erther unspecified (for the spontane-
ous and read versions of the spontaneous dictation), or were
the 5000-word vocabu'ary and bigram grammar as supplied
by Deug Paul from an analysis of the preprocessed WS}
corpus. (Actually, two different sets of bigram model proba-
bilittes were used. one modeling verbalized punctuation and
one modeling nonverbalized punctuation. These two were
used appropriately for the verbalized and nonverbalized
punctuation portions of the test sets, respectively.)

Given the rather massive computational challenge of train-
ing and testing in such a new recogrution domain. with
larger vocabulary and greater amount of test data. not all of
the test material was processed by all of the sites perform-
ing evaluation. Also. because of the vanety of traung and
evaluation conditions, few results were produced that could
be compared across sites. Two test sets. however, were eval-
uated on by more than a single site. Two sites produced
results on the SD 5000-word VP test set (Dragon and Lin-
coln). and three sites produced results on the S1 5000-word




VP test set (CMU, Lincoln, and SRI). These results are
given in a companion paper on “CSR Pilot Corpus Perfor-
mance Evaluation™ by David Pallett. '

Future CSR corpus effort and issues

Several issues have been identified that bear on the CSR
corpus and on potential changes in the design of the corpus:

* Verbalized punctuation. There is a significant argu-
ment to discontinue verbalized punctuation, for sev-
eral reasons: It doubles the number of language
models and test sets and thus the number of evalua-
tion conditions. It is artificial in the sense that it is
statistically unlike normal dictation, it is more diffi-
cult for many subjects to read. and it seems superfiu-
ous to the development of the underlying speech
recognition technology.

* Preprocessed prompting text. There is argument to
prompt the user with the natural unpreprocessed text
from the WSJ rather than with the preprocessed
word strings as produced by the text preprocessor.
The reason is that the word strings do not represent
the actual statistics of natural speech (see the com-
pamon paper by Phillips et. al entitled “Collection
and Analyses of WSJ-CSR Data at MIT™).

* Spontaneous speech. There is argument that the cur-
rent paradigm for collecting spontaneous speech is
not adequately refined to represent those aspects of
spontaneous speech that are important in actual
usage, and that spontaneous speech should remain in
an experimental and developmental mode during the
next CSR corpus phase.

* Adaptation. Speaker adaptation and adaptation to the
acoustical environment has emerged as a major
interest. It is clear that adaptive systems must be
accommodated in the next phase of the CSR corpus.

* CSR corpus development effort. It is acknowledged
that the CSR corpus development effort is a key
activity in the support and direction of CSR research,
and that this effort therefore requires program conti-
nuity and should not be treated as an occasional pro-
duction demand that can be easily started and

stopped.

These issues are currently under debate in the CCCC, and
the next instaliment of the CSR corpus. to be called the
CSR corpus, phase two, will no doubt reflect a continued
distillation of opinion on these 1ssues.

A-54




GEMINI: A NATURAL LANGUAGE SYSTEM FOR
SPOKEN-LANGUAGE UNDERSTANDING*

John Dowding, Jean Mark Gawron, Doug Appelt,
John Bear, Lynn Cherny, Robert Moore, and Douglas Moran

SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025
Internet: dowding@ai.sri.com

1. INTRODUCTION

Gemini is a natural language (NL) under-
standing system developed for spoken language
applications. This paper describes the details of
the system, and includes relevant measurements
of size, efficiency, and performance of each of its
components.

In designing any NL understanding system,
there is a tension between robustness and correct-
ness. Forgiving an error risks throwing away cru-
cial information; furthermore, devices added to a
system to enhance robustness can sometimes en-
rich the ways of finding an analysis, multiplying
the number of analyses for a given input, and mak-
ing it more difficult to find the correct analysis. In
processing spoken language this tension is height-
ened because the task of speech recognition in-
troduces a new source of error. The robust sys-
tem will attempt to find a sensible interpretation,
even in the presence of performance errors by the
speaker, or recognition errors by the speech rec-
ognizer. On the other hand, a system should be
able to detect that a recognized string is not a sen-
tence of English, to help filter recognition errors by
the speech recognizer. Furthermore, if parsing and
recognition are interleaved, then the parser should
enforce constraints on partial utterances.

The approach taken in Gemini is to con-
strain language recognition with fairly conven-
tional grammar, but to augment that grammar
with two orthogonal rule-based recognition mod-
ules, one for glueing together the fragments found
during the conventional grammar parsing phase,
and another for recognizing and eliminating dis-
fluencies known as “repairs.” At the same time,

*This research was supported by the Advanced Re-
search Projects Agency under Contract ONR N00014-
90-C-0085 with the Office of Naval Research. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either ex-
pressed or implied, of the Advanced Research Projects
Agency of the U.S. Government,.
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the multiple analyses arising before and after all
this added robustness are managed in two ways:
first, by highly constraining the additional rule-
based modules by partitioning the rules into pref-
erence classes, and second, through the addition
of a postprocessing parse preference component.

Processing starts in Gemini when syntac-
tic, semantic, and lexica! rules are applied by a
bottom-up all-paths constituent parser to populate
a chart with edges containing syntactic, seman-
tic, and logical form information. Then, a second
uilerance parser is used to apply a second set of
syntactic and semantic rules that are required to
span the entire utterance. If no semantically ac-
ceptable utterance-spanning edges are found dur-
ing this phase, a component to recognize and cor-
rect certain grammatical disfluencies is applied.
When an acceptable interpretation is found, a set
of parse preferences is used to choose a single best
interpretation from the chart to be used for sub-
sequent processing. Quantifier scoping rules are
applied to this best interpretation to produce the
final logical form, which is then used as input to
a query-answering system. The following sections
describe each of these components in detail, with
the exception of the query-answering subsystem,
which is not described in this paper.

In our component-by-component view of
Gemini, we provide detailed statistics on each
component’s size, speed, coverage, and accuracy.
These numbers detail our performance on the sub-
domain of air-travel planning that is currently be-
ing used by the ARPA spoken language under-
standing community (MADCOW, 1992). Gem-
ini was trained on a 5875-utterance dataset from
this domain, with another 688 utterances used as
a blind test (not explicitly trained on, but run
multiple times) to monitor our performance on a
dataset on which we did not train. We also report
here our results on another 756-utterance fair test
set that we ran only once. Table 1 contains a sum-
mary of the coverage of the various components on
both the training and fair test sets. More detailed




explanations of these numbers are given in the rel-
evant sections. :

Training  Test
Lexicon 99.1% 95.9%
Syntax 94.2% 90.9%
Semantics 87.4% 83.7%
Syntax (repair correction) 96.0% 93.1%
Semantics (repair correction) 89.1% 86.0%

Table 1: Domain Coverage by Component

2. SYSTEM DESCRIPTION

Gemini maintains a firm separation between
the language- and domain-specific portions of the
system, and the underlying infrastructure and ex-
ecution strategies. The Gemini kernel consists of
a set of compilers to interpret the high-level lan-
guages in which the lexicon and syntactic and se-
mantic grammar rules are written, as well as the
parser, semantic interpretation, quantifier scop-
ing, repair correction mechanisms, and all other
aspects of Gemini that are not specific to a lan-
guage or domain. Although this paper describes
the lexicon, grammar, and semantics of English,
Gemini has also been used in a Japanese spo-

ken language understanding system (Kameyama,
1992).

2.1. Grammar Formalism

Gemini includes a midsized constituent gram-
mar of English (described in section 2.3), a small
utterance grammar for assembling constituents
into utterances (described in section 2.7), and a
lexicon. All three are written in a variant of the
unification formalism used in the Core Language
Engine (Alshawi, 1992) .

The basic building block of the grammar for-
malism is a category with feature constraints.
Here is an example:

np: [wh=ynq,case=(nomvacc},
pers_num={3rdAsg)]

This category can be instantiated by any noun
phrase with the value ynq for its wh feature (which
means it must be a wh-bearing noun phrase like
which book, who, or whose mother), either acc (ac-
cusative) or nom (nominative) for its case feature,
and the conjunctive value 3rdAsg (third and sin-
gular) for its person-number feature. This for-
malism is related directly to the Core Language
Engine, but more conceptually it is closely re-
lated to that of other unification-based grammar
formalisms with a context-free skeleton, such as
PATR-II (Shieber et al., 1983), Categorial Uni-
fication Grammar {Uszkoreit, 1986), Generalized
Phrase-Structure Grammar (Gazdar et al., 1982),
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and Lexical Functional Grammar (Bresnan, 1982).

Gemini differs from other unification for-
malisms in the following ways. Since many of
the most interesting issues regarding the formal-
ism concern typing, we defer discussing motivation
until section 2.5.

¢ Gemini uses typed unification. Each category
has a set of features declared for it. Each fea-
ture has a declared value space of possible values
(value spaces may be shared by different fea-
tures). Feature structures in Gemini can be re-
cursive, but only by having categories in their
value space; so typing is also recursive. Typed
feature structures are also used in HPSG (Pol-
lard and Sag, in press). One important differ-
ence with the use in Gemini is that Gemini has
no type inheritance.

e Some approaches do not assume a syntactic
skeleton of category-introducing rules (for ex-
ample, Functional Unification Grammar (Kay,
1979)). Some make such rules implicit (for
example, the various categorial unification ap-
proaches, such as Unification Categorial Gram-
mar (Zeevat, Klein, and Calder, 1987})).

e Even when a syntactic skeleton is assumed,
some approaches do not distinguish the category
of a constituent (for example, np, vp) from its
other features (for example, pera num, gapsin,
gapsout). Thus, for example, in one version of
GPSG, categories were simply feature bundles
(attribute value structures) and there was a fea-
ture MAJ taking values like ¥,V,A, and P which
determined the major category of constituent.

o Gemini does not allow rules schematizing over
syntactic categories.

2.2. Lexicon

The Gemini lexicon uses the same category
notation as the Gemini syntactic rules. Lexical
categories are types as well, with sets of features
defined for them. The lexical component of Gem-
ini includes the lexicon of base forms, lexical tem-
plates, morphological rules, and the lexical type
and feature default specifications.

The Gemini lexicon used for the air-travel
planning domain contains 1,315 base entries.
These expand by morphological rules to 2,019. In
the 5875-utterance training set, 52 sentences con-
tained unknown words (0.9%), compared to 31
sentences in the 756-utterance fair test set (4.1%).

2.3. Constituent Grammar

A simplified example of a syntactic rule is




syn(whq.yng-slashnp,
[ s:[sentence_type=whq, form=tnsd,
gapsin=G, gapsout=G],
ap: [wh=ynq, pers.num=R],
s:[sentence_type=ynq, form=tnsd,
gapsin=np: ([pers num=N],
gapsout=null]ll).

This syntax rule (named whq.ynq.slash.np)
says that a sentence (category 8) can be built by
finding a noun phrase (category np) followed by a
sentence. It requires that the daughter np have the
value ynq for its wh feature and that it have the
value ¥ (a variable) for its person-number feature.
It requires that the daughter sentence have a cat-
egory value for its gapsin feature, namely an np
with a person number value N, which is the same as
the person number value on the wh-bearing noun
phrase. The interpretation of the entire rule is
that a gapless sentence with sentence_type whq
can be built by finding a wh-phrase followed by a
sentence with a noun phrase gap in it that has the
same person number as the wh-phrase.

Semantic rules are written in much the same
rule format, except that in a semantic rule, each of
the constituents mentioned in the phrase structure
skeleton is associated with a logical form. Thus,
the semantics for the rule above is

sem(whq.ynq.slashnp,

{(Iehq,s], s:0),

(¥p, np: (1),

(s, s:[gapsin=np: [gapsem=Np]]1)]).

Here the semantics of the mother s is just the
semantics of the daughter s with the illocution-
ary force marker whq wrapped around it. In addi-
tion, the semantics of the s gap’s np’s gapsem has
been unified with the semantics of the wh-phrase.
Through a succession of unifications this will end
up assigning the wh-phrase’s semantics to the gap
position in the argument structure of the s. Al-
though each semantic rule must be keyed to a pre-
existing syntactic rule, there is no assumption of
rule-to-rule uniqueness. Any number of semantic
rules may be written for a single syntactic rule.
We discuss some further details of the semantics
in section 2.6

The constituent grammar used in Gemini con-
tains 243 syntactic rules, and 315 semantic rules.
Syntactic coverage on the 5875-utterance training
set was 94.2%, and on the 756-utterance test set
it was 90.9%.

2.4. Parser

Since Gemini was designed with spoken lan-
guage interpretation in mind, key aspects of the
Gemini parser are motivated by the increased
needs for robustness and efficiency that charac-
terize spoken language. Gemini uses essentially
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a pure bottom-up chart parser, with some limited
left-context constraints applied to control creation
of categories containing syntactic gaps.

Some key properties of the parser are

o The parser is all-paths bottom-up, so that all
possible edges admissible by the grammar are
found.

e The parser uses subsumption checking to reduce
the size of the chart. Essentially, an edge is not
added to the chart if it is less general than a
preexisting edge, and preexisting edges are re-
moved from the chart if the new edge is more
general.

o The parser is on-line (Graham, Harrison, and
Russo, 1980}, essentially meaning that all edges
that end at position ¢ are constructed before
any that end at position i 4 1. This feature is
particularly desirable if the final architecture of
the speech understanding system couples Gem-
ini tightly with the speech recognizer, since it
guarantees for any partial recognition input that
all possible constituents will be built.

An important feature of the parser is the
mechanism used to constrain the construction of
categories containing syntactic gaps. In earlier
work (Moore and Dowding, 1991), we showed that
approximately 80% of the edges built in an all-
paths bottom-up parser contained gaps, and that
it is possible to use prediction in a bottom-up
parser only to constrain the gap categories, with-
out requiring prediction for nongapped categories.
This limited form of left-context constraint greatly
reduces the total number of edges built for a very
low overhead. In the 5875-utterance training set,
the chart for the average sentence contained 313
edges, but only 23 predictions.

2.5. Typing

The main advantage of typed unification is for
grammar development. The type information on
features allows the lexicon, grammar, and seman-
tics compilers to provide detailed error analysis re-
garding the flow of values through the grammar,
and to warn if features are assigned improper val-
ues, or variables of incompatible types are unified.
Since the type-analysis is performed statically at
compile time, there is no run-time overhead asso-
ciated with adding types to the grammar.

The major grammatical category plays a spe-
cial role in the typing scheme of Gemini. For each
category, Gemini makes a set of declarations stipu-
lating its allowable features and the relevant value
spaces. Thus, the distinction between the syntac-
tic category of a constituent and its other features
can be cashed out as follows: the syntactic cat-
egory can be thought of as the feature structure




type. The only other types needed by Gemini are
the value spaces used by features.- Thus for ex-
ample, the type v (verb) admits a feature vfornm,
whose value space vform-types can be instanti-
ated with values like present participle, finite, and
past participle. Since all recursive features are
category-valued, these two kinds of types suffice.

2.6. Interleaving Syntactic and Se-
mantic Information

Sortal Constraints Selectional restrictions
are imposed in Gemini through the sorts mecha-
nism. Selectional restrictions include both highly
domain-specific information about predicate-
argt 1ent and very general predicate restrictions.
For example, in our application the object of
the transitive verb depart (as in flights departing
Boston) is restricted to be an airport or a city,
obviously a domain-specific requirement. But the
same machinery also restricts a determiner like all
to take two propositions, and an adjective like fur-
ther to take distances as its measure-specifier (as
in thirly miles further). In fact, sortal constraints
are assigned to every atomic predicate and opera-
tor appearing in the logical forms constructed by
the semantic rules.

Sorts are located in a conceptual hierarchy
and are implemented as Prolog terms such that
more general sorts subsume more specific sorts
(Mellish, 1988). This allows the subsumption
checking and packing in the parser to share struc-
ture wheneve, possible. Semantic coverage with
sortal constraints applied was 87.4% on the train-
ing set, and on the test set it was 83.7%.

Interleaving Semantics with Parsing In
Gemini, syntactic and semantic processing is fully
interleaved. Building an edge requires that syntac-
tic constraints be applied, which results in a tree
structure, to which semantic rules can be applied,
which results in a logical form to which sortal con-
traints can be applied. Only if the syntactic edge
leads to a well-sorted semantically-acceptable log-
ical form fragment is it added to the chart.

Interleaving the syntax and semantics in this
way depends on a crucial property of the seman-
tics: a semantic interpretation is available for each
syntactic node. This is guaranteed by the seman-
tic rule formalism and by the fact that every lexical
item has a semantics associated with it.

Table 2 contains average edge counts and
parse timing statistics’ for the 5875-utterance
training set.

! Gemini is implemented primarily in Quintus Pro-
log version 3.1.1. All timing numbers given in this
paper were run on a lightly loaded Sun SPARCsta-
tion 2 with at least 48 MB of memory. Under normal
conditions, Gemini runs in under 12 MB of memory.
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Edges  Time
Syntax only 197 3.4 sec.
Syntax + semantics 234 4.47 sec.
Syntax + semantics 4 sorts 313 13.5 sec.

Table 2: Average Number of Edges Built by In-
terleaved Processing

2.7. Utterance Parsing

The constituent parser uses the constituent
grammar to build all possible categories bottom-
up, independent of location within the string.
Thus, the constituent parser does not force any
constituent to occur either at the beginning of
the utterance, or at the end. Those constraints
are stated in what we call the utterance grammar.
They are applied after constituent parsing is com-
plete by the utterance parser. The utterance gram-
mar specifies ways of combining the categories
found by the constituent parser into an analysis
of the complete utterance. It is at this point that
the system recognizes whether the sentence was
a simple complete sentence, an isolated sentence
fragment, a run-on sentence, or a sequence of re-
lated fragments.

Many systems (Carbonell and Hayes, 1983),
(Hobbs et al., 1992}, (Seneff, 1992}, (Stallard and
Bobrow, 1992) have added robustness with a sim-
ilar postprocessing phase. The approach taken
in Gemini differs in that the utterance grammar
uses the same syntactic and semantic rule for-
malism used by the constituent grammar. Thus,
the same kinds of logical forms built during con-
stituent parsing are the output of utterarce pars-
ing, with the same sortal constraints enforced. For
example, an utterance consisting of a sequence
of modifier fragments (like on Tuesday at three
o’clock on United) is interpreted as a conjoined
property of a flight, because the only sort of thing
in the ATIS domain that can be on Tuesday at
three o’clock on United is a flight.

The utterance parser partitions the utterance
grammar into equivalence classes and considers
each class according to an ordering. Utterance
parsing terminates when all constituents satisfy-
ing the rules of the current equivalence class are
built, unless there are none, in which case the next
class is considered. The highest ranked class con-
sists of rules to identify simple complete sentences,
the next highest class consists of rules to iden-
tify simple isolated sentence fragments, and so on.
Thus, the utterance parser allows us to enforce a
very coarse form of parse preferences {for exam-
ple, prefering complete sentences to sentence frag-
ments). These coarse preferences could also be
enforced by the parse preference component de-




scribed in section 2.9, but for the sake of efficiency
we choose to enforce them here.

The utterance grammar is significantly
smaller than the constituent grammar - only 37
syntactic rules and 43 semantic rules.

2.8. Repairs

Grammatical disfluencies occur frequently in
spontaneous spoken language. We have imple-
mented a component to detect and correct a large
subclass of these disfluencies (called repairs, or
self-corrections) where the speaker intends that
the meaning of the utterance be gotten by deleting
one or more words. Often, the speaker gives clues
of their intention by repeating words or adding cue
words that signal the repair:

(1) a. How many American airline flights leave
Denver on June June tenth.
b. Can you give me information on all the
flights from San Francisco no from Pitts-
burgh to San Francisco on Monday.

The mechanism used in Gemini to detect and
correct repairs is currently applied as a fallback if
no semantically acceptable interpretation is found
for the complete utterance. The mechanism finds
sequences of identical or related words, possibly
separated by a cue word (for example, oh or no)
that might indicate the presence of a repair, and
deletes the first occurrence of the matching por-
tion. Since there may be several such sequences of
possible repairs in the utterance, the mechanism
produces a ranked set of candidate corrected ut-
terances. These candidates are ranked in order
of the fewest deleted words. The first candidate
that can be given an interpretation is accepted as
the intended meaning of the utterance. This ap-
proach is presented in detail in {Bear, Dowding,

and Shriberg, 1992).

The repair correction mechanism helps in-
crease the syntactic and semantic coverage of
Gemini (as reported in Table 1). In the 5875-
utterance trainin% set, 178 sentences contained
nontrivial repairs®, of which Gemini found 89
(50%). Of the sentences Gemini corrected, 81 were
analyzed correctly (91%), and 8 contained repairs
but were corrected wrongly. Similarly, the 756-
utterance test set contained 26 repairs, of which
Gemini found 11 (42%). Of those 11, 8 were ana-
lyzed correctly (77%), and 3 were analyzed incor-
rectly.

Since Gemini’s approach is to extend lan-
guage analysis to recognize specific patterns char-
acteristic of spoken language, it is important for

2For these results, we ignored repairs consisting of
only an isolate fragment word, or sentence-initial filler
words like “yes” and “okay”.
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components like repair correction (which provide
the powerful capability of deleting words) not to
be applied in circumstances where no repair is
present. In the 5875-utterance training set, Gem-
ini misidentified only 15 sentences {0.25%) as con-
taining repairs when they did not. In the 756-
utterance test set, only 2 sentences were misiden-
tified as containing repairs (0.26%).

While the repair correction component cur-
rently used in Gemini does not make use of acous-
tic/prosodic information, it is clear that acoustics
can contribute meaningful cues to repair. In fu-
ture work, we hope to improve the performance of
our repair correction component by incorporating
acoustic/prosodic techniques for repair detection
(Bear, Dowding, and Shriberg, 1992) {Nakatani
and Hirschberg, 1993) (O’Shaughnessy, 1992).

A central question about the repairs module
concerns its role in a tightly integrated system in
which the NL component filters speech recognition
hypotheses. The open question: should the repairs
moduie be part of the recognizer filter or should
it continue to be a post-processing component?
The argument for including it in the filter is that
without a repairs module, the NL system rejects
many sentences with repairs, and will thus dispre-
fer essentially correct recognizer hypotheses. The
argument against including it is efficiency and the
concern that with recognizer errors present, the
iepair module’s precision may suffer: it may at-
tempt to repair sentences with no repair in them.
Our current best guess is that recognizer errors
are essentially orthogonal to repairs and that a
filter including the repairs module will not suffer
from precision problems. But we have not yet per-
formed the experiments to decide this.

2.9. Parse Preference Mechanism

In Gemini, parse preferences are enforced
when eziracting syntactically and semantically
well-formed parse trees from the chart. In this
respect, our approach differs from many other
approaches to the problem of parse preferences,
which make their preference decisions as pars-
ing progresses, pruning subsequent parsing paths
(Frazier and Fodor, 1978), (Hobbs and Bear,
1990), (Marcus 1980). Applying parse prefer-
ences requires comparing two subtrees spanning
the same portion of the utterance.

The parse preference mechanism begins with
a simple strategy to disprefer parse trees contain-
ing specific “marked” syntax rules. As an example
of a dispreferred rule, consider: Book those three
Rights to Boston. This sentence has a parse on
which those three is a noun phrase with a miss-
ing head (consider a continuation of the discourse
Three of our clients have sufficient credif). After
penalizing such dispreferred parses, the preference




mechanism applies attachment heuristics based on
the work by Pereira (1J85) and Shieber (1983)

Pereira’s paper shows how the heuristics of
Minimal Attachment and Right Association (Kim-
ball, 1973) can both be implemented using a
bottom-up shift-reduce parser.

(2)(a) John sang a song for Mary.
(b) John canceled the room Mary reserved yes-
terday.

Minimal Attachment selects for the tree with the
fewest nodes, so in (2a), the parse that makes for
Mary a complement of sings is preferred. Right
Association selects for the tree that incorporates
a constituent A into the rightmost possibie con-
stituent (where rightmost here means beginning
the furthest to the right). Thus, in (2b) the parse
in which yesterdey modifies reserved is preferred.

The problem with these heuristics is that
when they are formulated loosely, as in the pre-
vious paragraph, they appear to conflict. In par-
ticular, in (2a), Right Association seems to call for
the parse that makes for Mary a modifier of song.

Pereira’s goal is to show how a shift-reduce
parser can enforce both heuristics without conflict
and enforce the desired preferences for examples
like (2a) and (2b). He argues that Minimal At-
tachment and Right Association can be enforced in
the desired way by adopting the following heuris-
tics for resolving conflicts:

1. Right Association: In a shift-reduce conflict,
prefer shifts to reduces.

2. Minimal Attachment: In a reduce-reduce con-
flict, prefer longer reduces to shorter reduces.

Since these two principles never apply to the same
choice, they never conflict.

For purposes of invoking Pereira’s heuristics,
the derivation of a parse can be represented as the
sequence of §’s (Shift) and R’s (Reduce) needed to
construct the parse’s unlabeled bracketing. Con-
sider, for example, the choice between two unla-
beled bracketings of (2a):

(a) [John [sang {a song ] [for Mary ] ]]
S S SS RS S RRR
(b) [John {sang | [a song ] [for Mary ]]]]
S S SS RS S RRRR

There is a shift for each word and a reduce for
each right bracket. Comparison of the two parses
consists simply of pairing the moves in the shift-
reduce derivation from left to right. Any parse
making a shift move that corresponds to a reduce
move loses by Right Association. Any parse mak-
ing a reduce move that corresponds to a longer
reduce loses by Minimal Attachment. In deriva-
tion (b) above, the third reduce move builds the

constituent a song for Mary from two constituents,
while the corresponding reduce in (a) builds sang
a song for Mary from three constituents. Parse
(b) thus loses by Minimal At~ himent.

Questions about the exact nature of parse
preferences (and thus about the empirical ade-
quacy of Pereira’s proposal) still remain open, but
the mechanism sketched does provide plausible re-
sults for a number of examples.

2.10. Scoping

The final logical form produced by Gemini
is the result of applying a set of quantifier scop-
ing rules to the best interpretation chosen by the
parse preference mechanism. The semantic rules
build quasi-logical forms, which contain complete
semantic predicate-argument structure, but do not
specify quantifier scoping. The scoping algorithm
that we use combines syntactic and semantic in-
formation with a set of quantifier scoping prefer-
ence rules to rank the possible scoped logical forms
consistent with the quasi-logical form selected by

parse preferences. This algorithm is described in
detail in (Moran, 1988).

3. CONCLUSION

In our approach to resolving the tension be-
tween overgeneration and robustness in a spoken
language understanding system, some aspects of
Gemini are specifically oriented towards limiting
overgeneration, such as the on-line property for
the parser, and fully interleaved syntactic and se-
mantic processing. Other components, such as the
fragment and run-on processing provided by the
utterance grammar, and the correction of recog-
nizable grammatical repairs, increase the robust-
ness of Gemini. We believe a robust system can
still recognize and disprefer utterances containing
recognition errors.

Research in the construction of the Gemini
system is ongoing to improve Gemini’s speed and
coverage, as well as to examine deeper integration
strategies with speech recognition, and integration
of prosodic information into spoken language dis-
ambiguation.
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Focus and Ellipsis in Comparatives and Superlatives: A Case Study
Jean Mark Gawron
SRI International

1. Introduction

The central goal of this paper is to present a semantics of comparatives that
deals uniformly with comparative ellipsis and superlatives. Consider ( 1):

(1)  Jean; gave her; sister a more expensive book than Alice.

Understandings of the following types are possible:

1. HER SISTER focus: Jean gave Jean’s sister a more expensive book
than Jean gave Alice.

to

JEAN focus (strict): Jean gave Jean’s sister a more expensive book than
Alice gave Jean'’s sister.

3. JEAN focus (sloppy): Jean gave Jean’s sister a more ¢xpensive book
than Alice gave Alice’s sister.

In each case, the NP which semantically parallels the NP in the than-phrase
has been called the focus. I will refer to the NP in the than-phrase as the con-
trast. Now consider the variants in ( 2), which have analogous interpretations:

(2)  Jean gave her sister the most/more expensive book.

1. HER SISTER focus: of all/both x’s such that Jean gave x books, Jean
gave Jean’s sister the most/more expensive book.

2. JEAN focus (strict): of all/both x’s such that x gave Jean’s sister books,
Jean gave Jean’s sister the most/more expensive book.

3. JEAN focus (sloppy): of all/both x’s such that x gave x’s sister books,
Jean gave Jean’s sister the most/more expensive book.

I will use the term CONTRAST-SET to describe the set of entities whose prop-
erties are being measured and compared, a set which always includes the
denotation of the focus. In the paraphrases above, the contrast-set is de-
scribed by the of-phrase. I will call the nonelliptical focus constructions in
( 2) maximal-degree constructions (rather than superlative constructions) be-
cause they come with both comparative and superlative morphology. The only
difference between the two is whether or not the contrast-set is presupposed
to have two members.
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Fach of the three readings in ( 2) can be obtained from the corresponding
reading of ( 1) simply by quantifying over the argument position filled by the
contrast. Sentence ( 2) has another reading with no parallel in { 1). This is the
reading on which no givings are presupposed. There is simply a set of books
available in the discourse, and Jean has given her sister the most expensive.
I will refer to the minimal NP containing the comparative element as the
COMPARATIVE NP in comparatives and the SUPERLATIVE NP in superlatives.
For this reading, I will say that the superlative NP is the focus. One kind of
elliptical comparative which makes a parallel comparison is shown in

(3)  Jean gave her sister a more expensive book than War and Peace.

Here, too, only one giving event is at issue. What is being compared is the
expense of the book in that giving event with the expense of War and Peace.

The basic conclusion I draw from (1), (2), and (3) is the following: for
both constructions interpretations vary according to which NP is taken as
focus. In effect, the same interpretive difficulties that arise in comparatives
arise in maximal-degree constructions.

I wili argue below that there is a striking similarity between the pattern
of readings in (1) and (3) and a pattern typical of the interaction of focus and
quantification. Consider, two different focus possibilities for ( 4):

(4) a. Most New Yorkers eat Chinese food with CHOPSTICKS.
b. Most New Yorkers eat CHINESE FOOD with chopsticks.

The two focus possibilities correspond roughly to the following readings:

(5) a. Most New Yorkers who eat Chinese food with something eat Chinese
food with CHOPSTICKS.
b. Most New Yorkers who eat something with chopsticks eat CHINESE
FOOD with chopsticks.

In each case the focus construction can be thought of as adding a restriction to
the quantification. The restriction is obtained by abstracting the focus out of
the main clause semantics and existentially quantifying it away. I will follow
Jacobs 1991 by calling the property obtained by abstracting the focus out of
the main clause semantics the BACKGROUND.

Consistent with a number of other analyses (beginning with Cresswell
1976), this treatment will interpret both comparatives and superlatives as a
quantification over degrees; the various readings above are all obtained by
restricting the comparative quantification with different backgrounds.

As remarked above, (2) has both superlative and comparative variants.
Thus, comparative morphology is compatible with maximal-degree semantics.
Some sentences are ambiguous. Consider:
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(6)  Who's taller?
Sentence { 6) might be uttered in two different sorts of contexts:

(7} a. Their center is not the tallest member of the team. Who's taller?
b. John and Bill weigh the same. Who's taller?

In (a), the question is which member of the team under discussion is taller
than the center. This is a discourse-bound comparative. In (b}, the discourse
provides a contrast-set and the question is who in that set has the maximum
height. Since the set ha< cardinality two, the comparative form of the adjective
is licensed. The second sentence in {b) might be replaced with any of the
following:

(8)  a. Of the two, who's taller?
b. Who's taller, John or Bill?
c. Is John or Bill taller?

All of these unambiguously call for a maximal-degree interpretation.

The comparative construction exhibits a bewildering range of elliptical
phenomena. This paper is concerned with COMPARATIVE ELLIPSIS. | take it
that all of the following are elliptical:

(9) John has met more presidents than Mary.

John has met more presidents than Mary has.

John has met more presidents than Mary has met.
John owns pictures of more presidents than Mary owns.

John owns more trucks than Mary does cars.

® o O

Sentence ( 9a) illustrates what I will call comparative ellipsis; ( 9b} illustrates
the comparative construction interacting with verb-phrase ellipsis; ( 9¢) illus-
trates the almost obligatory deletion of the head noun of the degree NP in the
than-clause when it is identical with the head noun of the comparative NP;
and ( 9d) illustrates what may be a more extreme version of the same thing.
Sentence ( 9e) illustrates gapping in a comparative clause. Dealing with all
these examples would be well beyond the scope of this paper.

Having stated the practical agenda for the paper, I will add that I do not
foresee any problems of principle. The approach to both ellipsis and focus that
I will adopt is from Dalrymple, Shieber, and Pereira 1991 (henceforth DSP),
a paper which deals primarily with verb-phrase ellipsis.! The DSP framework
shows promise of being a very general tool with which to approach phenomena
of ellipsis. It seems likely that examples of the type exhibited in { 9b) and ( 9e)

Pulman 1991 also proposes applying the DSP framework to comparative ellipsis. The
details of the analysis are different, but the approach s very much in the spirit of what is
argued here.
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do not present problems particular to comparatives. Sentences [ 9¢) and { 9d}
do raise issues particular to comparatives, but the form of ellipsis shown there
is largely orthogonal to the central issues of this paper. 1 emphasize sentences
like ( 9a) because these are the examples that behave most like other focus
constructions with regard to the scope-of-focus issues discussed in Section 2.1.

I will distinguish between degree and quantity comparatives. Degree com-
paratives are adjectival or adverbial. Quantity comparatives involve number
or amount:

Degree: John drove faster than Mary.
John was taller than Mary.
Quantity: John ate more apples than Mary.
John drank more wine than Mary.

Due to limitations of space, I will deal only with degree comparatives in this
paper. There are some interesting issues involved in extending the account here
to quantity comparatives, which show somewhat different ranges of readings
of scope properties. For a fuller discussion, see Gawron 1992.

2. Parallels between Measure Constructions and Only

The primary point of this section is to draw parallels between comparative
ellipsis and other focus constructions. It is clear from the examples discussed in
Section 1 that the than-phrase in comparative ellipsis seeks to associate with a
focus much as a word like only does. Thus, interpreting elliptical comparatives
and superlatives entails determining a focus or foci and a scope of focus.

2.1. Scope of Ellipsis and Scope-Fixing

Consider first the ambiguity of a sentence like:
(10) John wants to own more records than Mary.
Sentence { 10) can be paraphrased with either ( 11a) or ( 11b):

(11) a. Wide scope: John wants to own more records than Mary wants to
own.
b. Narrow scope: John wants to own more records than Mary owns.

In the wide-scope reading, the comparison is between desires; in the narrow-
scope reading, the comparison is between the number of records John owns
and the number John owns, and John wants that comparison to work out a
certain way.? As the paraphrases suggest, there is an ambiguity in how much
missing material has to be reconstructed. Now consider a superlative example:

2Paraphrase (b) here actually collapses two distinct de re and de dicto readings. but that
does not affect the point under discussion,
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(12) John wants to own the most records.
Again, two readings are possible:

(13) a. John wants to own more records than anyone else wants to own.
b. John wants to own more records than anyone else owns.
y

There is a difference between (11) and (13) in these cases; the attachment of
the than-phrase gives the comparative construction a syntactic way of firing
the scope of ellipsis. Consider the following:

(14) John wants to own more records than Mary by next year.

Sentence ( 14) has only a narrow-scope reading: what John wants is that
by next year his collection is bigger than Mary’s. A natural explanation is
that the modifier by November most naturally attaches low, thus forcing low
attachment of the than-phrase. Low attachment of the than-phrase means
narrow scope-of-focus.

In light of this evidence, we propose Hypothesis A, to be revised later:

Hypothesis A

The sister of than-phrase is the scope-of-focus in comparative el-
lipsis.

The simple picture of comparative ellipsis is this: there is a relation between an
individual and a measure and the measure-values of the relation are compared
for the focus and the contrast. By the scope-of-focus in Hypothesis A, | mean
the constituent whose semantics provides the relation being compared. In the
wide-scope reading of (10), that constituent is the VP wants to own more
records. In the narrow-scope reading, that constituent is the VP own more
records.

In being governed by something like Hypothesis A, comparative ellipsis
sentences with than resemble sentences with only. Scope-fixing effects with
only are discussed in Taglicht 1984 and Rooth 1985:

(15) a. They were advised to only learn Spanish.
b. They were only advised to learn Spanish.

Here (a) has the reading on which advice is given to ignore languages other
than Spanish; (b) has the reading on which the only advice given was to learn
Spanish. The (a) sentence lacks the reading available for the (b) sentence,
and vice versa. Thus, syntactic attachment of only fixes the scope of ellipsis,
just as the syntactic attachment of the than-phrase does. The sentences in
( 15) are unambiguous only by a syntactic accident. The word only attaches
verb-phrase initially so that it is clear which verb-phrase it has chosen; the
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than-phrase attaches verb-phrase finally, so that sentences like those in ( 13)
may be ambiguous.

2.2. Entailments in Adjectival Comparatives

Noun phrases analogous to the following are noted in Bresnan 1973:

(16) a. A stronger man than John was found.
b. 7A stronger man than Mary was found.
¢. A man stronger than John was found.
d. A man stronger than Mary was found.

One would like these facts to fall out from Hypothesis A. That is, all of the
NPs in ( 16) are elliptical, and what they are elliptical for is determined by
how much material is C-commanded by the than-phrase. Thus, one's account
of ellipsis, guided by Hypothesis A, ought to give the NPs semantics roughly
like the following:

(17) a. An m strong man such that [m > s and John is an s strong man]
b.?An m strong man such that] m > s and Mary is an s strong m=n]
c. A man m strong such that [ m > s and John is s strong]
d. A man m strong such that {m > s and Mary is s strong]

An interesting property of these cases is that they appear related to some
exceptions to Hypothesis A (discussed in Section 2.1). Consider:

(18) a. A more competent engineer than Bonnie was hired.

An m competent engineer such that [m > s and Bonnie is
an s competent engineer] was hired.

b. A more competent engineer was hired than Bonnie.

An m competent engineer was hired such that [m > s and
Bonnie, an s competent engineer, was hired).

A literal application of Hypothesis A would lead one to expect that these had
something like the indicated paraphrases, but in fact sentences (a) and (b) do
not appear to differ on their possible readings. Crucially, (b) has no entailment

that Bonnie was hired. Contrast the sort of case which motivated Hypothesis
A:

(19) BONNIE hired A more competent engineer than Frieda.

Here, if Bonnie is being compared to Frieda (that is, if Bonnie is the focus),
then Frieda has to have hired a engineer.

We can sum up the facts from this section and Section 2.1 with the
following observation:
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Observation

(a) When the comparative NP is the focus, the syntactic scope-of-
focus is the comparative N-bar.

(b) Otherwise the syntactic scope-of-focus is the surface sister of
the than-phrase.

One might eliminate the disjunctive nature of this observation in either of two
ways. First, one might assimilate (18b) to extraposition, and apply Hypothesis
A only to the source. The drawback of this approach, it seems to me, is that
it offers no explanation of the facts. Although an extraposition analysis will
capture the actual reading of (18), it gives no account of why other readings
aren’t possible. To correctly constrain the readings, we will need to restrict
than-phrases to N-bar attachment when the focus is the ~omparative NP. But
this restrictions will be lifted when the focus is anything else. The other way
to go is to look for a semantic explanation. This is what I will propose below.

3. Semantics of Comparatives
3.1. Subdeletion

To illustrate the approach to the semantics of comparatives taken here,
it will be useful to start with a noncomparative example:

(20) This desk is six feet wide.

I will represent the semantics of degree adjectives as a relation between indi-
viduals and degrees:

(21) wide ( that-table, [foot 6))

The term [foot 6] denotes a measure in an ordered set of measures with the sort
of structure discussed in Krifka 1987 and Nerbonne 1991. It is not crucial to
the issues discussed in this paper that degree adjectives be relations between
individuals and degrees, but it is crucial that the semantics of a simple measure
assertion like ( 21) have in it terms that correspond to an individual being
measured and a measure.

1 will also assume that adjectival relations are downwardly monotonic on
their measure arguments, so that if ( 21) is true then

(22) wide (that-table, [foot 5])

is also true. So the truth-conditions of ( 21) will only require that table to be
at least 6 feet wide. One advantage of this downward monotonicity is that the
semantics of that table is wide can just be:

(23) wide ( that-table, STANDARD)
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where STANDARD is some pragmatically fixed standard. The truth-conditions
of ( 23) will then require that table to be at least as wide as the standard.

The kind of comparative that is easiest to unders‘and semantically occurs
relatively infrequently:

(24) This desk is longer than that table is wide.
I assume that ( 25) provides a satisfactory logical representation of { 24):

(25) V¥ 7s [wide(that-table, ?s),
3Mm [>(Im, ?s),
long (this-desk, 7m)]]

Glossing the semantics: every degree s that is in the width relation to that
table is such that there exists a degree m greater than s that stands in the
length relation to this desk.

One reason for the universal quantificatior. is the downward monotonic-
ity of the adjective relation. We need to require this desk to have a length
taller than all the widths of that table in order to be sure that the maximal
width is included. There are other motivations for the universal quantification,
however. One is that the than-phrase is a negative polarity context:

(26) John is smarter than any bureaucrat.
Another is the behavior of comparatives in modal contexts:
(27) John can run faster than Bill.

This sentence shouid come out true only if John can run faster than any speed
Bill can run. To get this right, one would need universal quantification even
if the adjective relations weren’t downwardly monotonic.?

The central claim of this semantics is that the comparative construction
introduces a quantifier on measures restricted by the material in the than
phrase.?

I will assume that each measure set has an ordering relation on measures
which I will notate simply as >, and that comparatives use >. I will call

3Thanks to Bob Moore for pointing this example out.
41 will refer to the second-order property obtained by abstracting on v in:

Vs ¢(s),
Im[> (m, s), ¥(m)]]

as the comparative quantifier; thus, ¢ stands as the comparative quantifier's scope. Of 4
course, there are really two quantifiers here, and they can scope independently, but for most
of the examples under consideration that possibility is not germane to the discussion. This
paper has little to say about constraints on the scoping possibilities of the comparative
quantifier.
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the measure constrained by the main clause the STANDARD and the measure
constrained by the than-clause the REFERENCE.

3.1. Comparative Ellipsis

We now turn to cases involving ellipsis. We begin with a brief summary of the
framework of DSP, using a verb phrase ellipsis example:

(28) a. Bill washed his car and John did too.
b. AND[wash(b,car(b)), P(j)]

Given the semantics in (b), the problem of interpreting (a) now reduces to
the problem of solving for the unspecified property P. In DSP, resolving that
property involves the following steps.

1. Locate source: wash(b,car(b)).

2. Establish parallel elements and locate primary occurrences in source.
wash (b, car(b))

Parallel elements are constituents in a tree. Primary occurrences are
terms in the semantic form. A primary occurrence in the source is a
term actually contributed by a parallel element. Thus, the two subjects
are parallel in ( 28a), and the first occurrence of b above is primary
because it is contributed by the subject NP in the source. The second
is not because it is contributed by a pronoun which is not a parallel
element.

3. Set up equation.
P(b) = wash (b, car(b))
4. Solve equation.

Strict: P = Az{wash (z, car(b))}
Sloppy: P = Az|wash (z, car(z))]
P = Az[wash (b, car(z))]
P = Az|wash (b, car(b))]

5. Discard UNACCEPTABLE SOLUTIONS, that is, solutions which contain
a primary occurrence. D3P reject certain solutions that violate paral-
lelism in that they do not abstract over a primary occurrence. In this
case the single primary occurrence is the occurrence of b filling the first
argument role of wash. Thus, the third and fourth solutions above are
unacceptable.
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We now turn to cases of comparative ellipsis:
(29) Jean gave her sister a more expensive book than Alice.

The semantics is

(30) 3y [Vs [R(a, s),
Im [>(m, ),
AND[ book(y),
expensive( y, m)]}],
give( j , sister(j) , y)]
The idea here is that what the than-phrase contributes is just a relation be-
tween an individual and a measure:

R(a, s)

Note that is not meant to commit the syntax in any way to an empty measure
element.

On the approach to the semantics of comparatives we have adopted, the
than-phrase always introduces a proposition which restricts the comparative
quantifier, whether or not the sentence is elliptical. In the elliptical sentences
all we have restricting the quantifier is an unspecified relation between an
individual and a degree. The problem of interpreting the elliptical sentences
now reduces to the problem of resolving the relation R. We will resolve the
relation by abtracting elements out of the semantics of the main clause. Thus
we have a paradigm case of the interaction of focus and quantification as
discussed in section 1. A relation is being contributed by the semantics of the
main clause (this is what corresponds to the background of Jacobs 1991), and
that relation restricts the domain of quantification.

In the framework of DSP, solving for R means setting up a second-order
equation on the basis of parallelisms between the elliptical semantics and some
template semantics. The steps are as follows:

1. Locate scope-of-focus. We will use the term scope-of-focus rather than
source because, as illustrated in section 2.1, there are ambiguities in
comparative ellipsis that can be captured only if the amount of material
omitted in the ellipsis is allowed to vary. In this case, the template
on which the elliptical clause will be built is just the semantics of the
main clause minus the com; arative quantifier. That the comparative
quantifier must always be abstracted out before setting up equations is
just a stipulation about degree constructions (the account of maximal-
degree constructions will entail the same move):

(31) Jy[anD[book(y),
expensive( y, m)],
give( j, sister(j), y)}]]
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2. Establish parallel elements and locate primary occurrences in source. In
comparative ellipsis, there are two parallelisms to worry about. One will
be established simply by locating parallel elements in a syntactic tree.
This is the parallelism of the focus and contrast. The other parallelism
is that between the standard measure and the reference measure. Not
wishing to adopt an abstract syntactic analysis for these cases, I will
simply assume that parallelism of degrees is given by the construction.
Thus, the unique occurrence of the standard in ( 31) will be a primary
occurrence. Let us consider the case where Jean is focus.

Main Clause: JEAN gave her sister an m expensive book

Focus Standard
Than Clause: Alice s
Contrast Reference

3. Set up and solve equations.

(32) JEAN as focus: R(j,m) = 3 y[AND[book(y),
expensive( y, m)),
give(j, sister(), 9]
Strict: R = Az, z [3 y[AND{book( %),
expensive( y, z)],
give( z, sister(j), y)}]
Sloppy: R = Az, z [3 y[AND|book(y),
expensive( y, z)],
give( z, sister(z), y)]]

Substituting the acceptable solutions for R in ( 30) yields the desired
result.

4. Discard unacceptable solutions. Again these are just the solutions that
have primary occurrences in them. There are five unacceptable solutions
in all, two which fail only in leaving behind the primary occurrence of the
focus, two which fail in leaving behind both primary occurrences, and
one which fails in leaving behind the primary occurrence of the standard.
Here are two of them:

(3 R = Az, z 3y[aND[book(y),
expensive( y, z)],
give(j, sister(z), y)]

(34) R = Az, w 3 y[aND[book(y),
expensive( y, z)],
give( ], sister(z), y)]]
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The first of these would give the impossible reading: Jean gave Jean’s
sister a more expensive book than Jean gave Alice’s sister. The second is
just vacuous abstraction on both argument positions and would give the
contradictory reading that Jean gave her sister a more expensive book
than Jean gave her sister. The reader may verify that the other three
unacceptable solutions all give impossible readings.

The other reading to deal with is the case where her sister is the focus.
In this case the equation is:

(35) HER SISTER: R(sister(j),m) = 3 y[aND[book(y),
expensive( y, m)},
givel j, sister(i), )
R = Az, z [ y[AND[book( y),
expensive( y, z)],
give( j, z, y)]]

In this case there is only one acceptable solution because there is only one
primary occurrence for each argument of the relation. There are three unac-
ceptable solutions, one which leaves behind just the primary occurrence of the
focus, one which leaves behind just the primary occurrence of the standard,
and one with vacuous abstraction on both argument positions of R, which
leaves behind both.

We turn now to the other example of comparative ellipsis discussed in
Section 1:

(36) Jean gave her sister a more expensive book than War and Peace.

The semantics is:

(37) 3Jy [Vs [R(War-and-Peace, s),
Im [>(m, s),
AND| book(y),
expensive( y, m)]}],

give( j, sister(j), y)]
The equations for this scope-of-focus are:
(38)  R(y,m) = AND| book(y),
expensive( y, m)]

R = Az, z [AND| book( z)

expensive( z, z)}]

Since R is applied to War and Peace, the sentence will be true only if War and
Peace is a book. This, then, is one step in accounting for the entailment facts
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noted in Bresnan 1973 and discussed in Section 2.2. We still need to explain
why this is the correct scope-of-focus for those examples, however.

In this case the head noun and the adjective predications must both
contain primary occurrences. Among the unacceptable solutions, there are
iwo ruled out simply because they do not abstract over one of the two primary
occurrences of y:

(39) R = Az, z[AND[ book(y),
expensive( z, z)]|

R = )z, z [AND[ book( z)
expensive( ¥, z)]]

The first reading would not preserve the entailment that War and Peace is
a book (see Section 2.2). The second would contradictorily require that y be
more expensive than itself.

In calling both occurrences of y primary occurrences here, we are building
on the sense of primary occurrence as it is assumed in DSP. The motivation
for this move is the following: the two occurrences of y in the equations in
( 39) differ from the two occurrences of j in (32) in that the grammar always
requires the two occurrences of y to be identified. An adjective modifying
a noun always has its theme argument identified with the noun’s. One may
think of the semantics of the N-bar as being;:

[book A Az[expensive( z, z)]](w)

Here A represents property conjunction. From this perspective there is really
only one primary occurrence of the N-bar variable. What is going on here is
reminiscent of other cases where the grammar requires identification of two
variables, such as the cases of obligatorily sloppy pronouns in Serbo-Croatian
discussed in DSP. A more familiar case would be the cases of obligatory sloppy
readings with raising verbs such as ezpect in

(40) John expects to leave and Bill does too.

Here there is no reading on which Bill expects John to leave. Yet there is good -
motivation for believing that ezpect takes a proposition argument. and that
the semantics of the source clause is

(41) expect(j,leave(j))

Blocking the strict reading would entail hypothesizing two primary occur-
rences.

We have now worked through the semantics of two closely related ellipti-
cal examples, arguing that the principal difference between them is a difference
in the scope-of-ellipsis. It should be clear from these examples that any hopes
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this analysis may have in being explanatory lie in being able to give a prin-
cipled account of how the scope-of-focus is determined. Consider again the
semantics shown in (30). What would have happened if we had chosen the
scope-of-focus in (31) with the comparative NP as the focus? The reading
predicted then would have been incorrect:

(42)  Jean gave her sister an m expensive book and Jean gave her sister War
and Peace, an s expensive book, and m was bigger than s.

This is essentially the same fact we noted for (18).

I will now argue that for semantic reasons the maximal scope-of-focus
when the comparative NP is focus is the N-bar. Consider (37). There are
four cases to look at:

1. Nbar scope: okay.

2. The scope-of-focus is the scope of the indefinite.

R(y,m) = give(j,sister(j), y),

Here there is no occurrence of m on the right-hand side of the equation.
Therefore, this equation has no solution that does not involve vacuous
absiraction.

3. The scope-of-focus is the sentence with indefinite quantified in and r is
a first-order relation. The equation then is

R(y,m) = 3y[AND[ book(y),
expensive( y, m}],
give( j, sister(j), y)]]

The problem with this equation is that there is no occurrence of y, the
focus, on the right-hand side. Since the quantifier has been quantified
in, any y on the right hand side is a bound variable and no solution
can abstract over it. Again, the equation has no solutions which do not
involve vacuous abstraction.

4. The scope-of-focus is the sentence with indefinite quantified. R is a
higher-order relation. The system in DSP allows type-lifting in order to
deal with cases where one or both of the parallel elements is a quantifier.
Thus, in analyzing:

Every student revised his paper, and John did too.
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John can be made parallel to Every student by type-lifting. On this
account (36), War and Peace is parallel not to an individual-level vari-
able, but to the indefinite quantifier, a more expensive book. It is thus
type-lifted to be a quantifier:

AP[P(War-and-Peace)]

and R is correspondingly type-lifted to allow a quantifier to be one of its
arguments. The resulting equation is

AP[3y [AND| book(y), AND|book(y),
R expensive(y, m)] ,m| =3y expensive( y, m)),
P(y)}] give( j , sister(j) , y)

But this, too, has no solutions which do not involve vacuous abstrac-
tion. In this case no solution can simultaneously abstract over the focus
quantifier and m the standard. Two of the solutions are

R = AP, z[P (\y[give( j , sister(i), y)])]
R = AP, z[3 y[aAND] book( y),
expensive( y, 2)],
give( j , sister(j) , y)]]

There is also a solution which vacuously abstracts over both argument
positions.

If we could eliminate all the equations that have only vacuous solutions,
then we would have an account of why the N-bar is the only scope-of-focus
in this case. Careful readers of DSP will note that they posit no restriction
against vacuous solutions. Instead, unacceptable solutions are characterized
as those which still contain a primary occurrence. This rules out many cases
of vacuous abstraction, but it also rules out solutions such as (33). Rather
than try to modify this characterization, I want to suggest that there is an
independent restriction, not on solutions, but on equations, which rules out
those that have no nonvacuous solutions. This restriction should be thought
of as an adjunct to the algorithm for finding a source and parallel elements
and setting up an equation. An equation which has no nonvacuous solutions
is simply one for which no true parallelisms have been found.

We can now revise Hypothesis A of Section 2.1 and propose a semantic
account of the scope-of-focus facts observed in (18):

Hypotlesis A: Final Version

The syntactic scope-of-focus is the maximal constituent of the sur-
face sister of the than-phrase whose semantics can provide a scope-
of-focus with acceptable ellipsis equations.
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Note that with this hypothesis, we have an account of the adjectival entailment
facts noted in Bresnan 1973 and discussed in section 2.2

(43) 7 A stronger man than Mary was found.

The widest scope-of-focus that yields an acceptable equation is the N-bar.
There is one narrower scope-of-focus than that N-bar that yields equations
with acceptable solutions, namely, the semantics of the adjective:

(44) strong(y, m)

But Hypothesis A, on syntactic grounds, rules out choosing this as the scope-
of-focus for ( 43). It follows from this that any equations resolving the ellipsis
will have to include the noun predication in their solutions for R. Thus, any
sotutions will entail that Mary is a man.

3.2. Maximal-Degree Consturctions

We begin by presenting the semantics for (2), reproduced here:
(45) Jean gave her sister the most expensive book.

The semantics, irrespective of what the focus i,s is

(46) they [Vs [3z[C(z), R(=z, s)],
Im [2(m, ),
AND| book(y),
expensive( y, m)]]],
give( j , sister(j) , y)]

There are several differences here from the semantics of a comparative ellipsis
sentence. First, the position filled by the contrast in the than-phrase has
been existentially quantified over, with that quantification restricted to the
members of a contrast-set C. Under the scope of V, this has the effect of a
universal quantification. Seccnd, the ordering relation has been changed fromn
> to 2>. This is because the focus is in the contrast-set too, and if the sentence
is ever to be uttered truthfully, ties with the highest scoring element of the
contrast set must be allowed.®

One might argue for the inclusion of the contrast-set C in (46) on the
basis of a general requirement that all quantification should be contextually
restricted. But independently of that there is a specific motivation for making
it explicit in the semantics of superlatives. Sometimes the contrast-set can be
associated with syntactically overt material:

5The only difference in the semantics of Jean gave her sister the more expensive book is
that instead of quantifying over the contrast-set with 3 we quantify with (3;2).
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(47) a. Of the three sisters, Jean bought the most expensive book.
b. Which sister bought the most expensive book?

Thus, { 47a) is appropriate only when JEAN is the focus, and the set of buyers
Jean will be compared to is the set of the three sisters in question, which must
include Jean. In ( 47b), on what is probably the most accessible reading, the
contrast-set is identified with the restriction-set of the wh-phrase.

The equations for the case when Jean is focus and for the case when her
sister is focus are exactly as they were for the comparative analogue discussed
in Section 3.2, as are the solutions. As was noted in Section 1.1, sentence ( 46)
has another focus possibility, parallel not to (29) but to (36). In this case the
focus is the superlative NP. The equation for this reading is exactly the same
as the equation for (36), given in (38).

Another difference between the superlatives and the comparatives is that
no version of Hypothesis A applies to the superlatives, since they have no
than-phrase. Thus, nothing prevents a reading in which the scope of focus is
narrower than N-bar when the focus is the superlative NP:

(48) Of the three items the clerk showed, Jean bought the most expensive
ring.

Here the items need not be all rings. The scope-of-focus must be the adjective-
phrase alone:®

4, Conclusion

In this paper I have proposed an analysis of measure constructions that
provides a uniform semantics for comparative ellipsis and superlatives, arguing
that both can be regarded as examples of focus constructions. The specialness
of comparatives ellipsis consists in requiring a contrast along with a focus.

The analysis proposes an account of the entailments of degree compara-
tives in which the comparative NP is the focus. Thus,

(49) A stronger man than Bill was found.

entails that Bill was a man. This is accounted for by the relationship between
the scope-of-focus and the than-phrase.

I conclude with an effort to show that the equational machinery of DSP
does extend neatly to handle a paradigm case of a focus construction. The
following is a reworking of the analysis of only in Rooth 1985:

(50) John only introduced Sue to her brother.

SThanks to Carl Pollard for pointing this reading out.
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(51) "PL3z[Alz),aND"p, (P(z) = p)] ],
; (p = introduce(j, brother(s),s) )]

SUE: P(s) = [introduce(j, brother(s),s)]
P = )y [introduce(j, brother(y), y)]
P = )y [introduce(j, brother(s), y)]

HER BROTHER: P(brother(s)) = [introduce(j, brother(s),s)]
P = Ay [introduce(j, y, s)]

The resemblance of the proposed semantics to the semantics of maximal mea-
sure constructions is striking. Instcad of a universal quantification over mea-
sures, there is a universal quantification over propositions. Most interestingly,
in both cases, the restriction of the universal requires an existential quanti-
fication over a pragmatically given set. In the case of comparatives, I have
called that the contrast-set; Rooth calls A the alternative-set, characterizing
the members of A as the alternatives to the focus in the discourse. In the
case where her brother was focus, Rooth 1985 would associate two things with

( 50):

(52) a. Vp[C(p) A "p — p = introduce(j, brother(s), s)]
b. Ap3y[[A(y)] A p = introduce(j, y, s)]

The first is roughly the semantics of the sentence, independent of what the
focus is; the second is the p-set (or presupposition set) that goes with having
her brother ac focus. The p-set property in ( 52b) is then identified with the
property of propositions C in ( 52a). In the recasting given in ( 51) predicating
C of p has been replaced by predicating property P of any individual z and
requiring proposition p to be equal to the resulting proposition. The equations
solving for P are then set up depending on what has been chosen as the focus.
In effect, the task of recursively building up p-sets in parallel with the main
semantics is being taken over by the equation-solving machinery. Rooth’s idea
that one component of the semantics should be kept independent of what
the focus is has been preserved. In fact, that property has been preserved
throughout this paper: the semantics independently of a solved equation is
always compatible with any focus in the scope-of-focus.

Rooth’s approach shares with that of Jacobs 1991 the idea that an ac-
count of focus requires recourse to some two-component account of meaning.
In Rooth it is the main translation and the p-set; in Jacobs it is the focus and
the background. One interesting feature of the equational approach is that it
tries to make do with a single meaning component, which can then generate
a variety of restrictions on the quantifications of focus operators.
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ABSTRACT

The Air Travel Information System (ATIS) domain serves as
the common task for DARPA spoken language system re-
search and development. The approaches and results possi-
ble in this rapidly growing area are structured by available
corpora, annotations of that data, and evaluation methods.
Coordination of this crucial infrastructure is the charter of
the Multi-Site ATIS Data COllection Working group (MAD-
COW)}. We focus here on: selection of training and test data,
evaluation of language understanding, and the continuing
search for evaluation methods that will correlate well with
expected performance of the technology in applications.

1. Introduction

Data availability and evaluation procedures crucially
structure research possibilities: the type and amount of
training data affects the performance of existing algo-
rithms and limits the development of new algorithms;
and evaluation procedures document progress, and force
research choices in a world of limited resources. The
recent rapid progress in spoken language understanding
owes much to our success in collecting and distributing a
large corpus of speech, transcriptions and associated ma-
terials based on human-machine interactions in the air
travel domain. MADCOW has coordinated the multi-
site data collection and evaluation effort. The DARPA
Spoken Language community has long recognized that
we were simultaneously developing evaluation method-
ologies and relying on these methods to evaluate systems
and to push the research forward. This tight feedback
loop has permitted us to extend our evaluation method-
ology incrementally. This paper reports on the status of
the MADCOW-coordinated data collection effort and on
recent evaluations.

The multi-site data collection paradigm [3, 4] distributes
the burden of data collection, provides data rapidly, ed-
ucates multiple sites about data collection issues, and
results in a more diverse pool of data than could be ob-

*This paper was written the auspices of the the Multi-Site ATIS
Data Collection Working group (MADCOW}. In addition to the
suthors, many other people, listed under the Acknowledgements
section, made important contributions to this work.

represents a wide range of variability in speaker char-
acteristics, speech style, language style and interaction
style. It has allowed individual sites to experiment with
data collection methods: replacing various system com-
ponents with a human results in data we can aim for in
the future, while completely automated systems help us
to focus on the major current issues in system accuracy
and speed. Sites have also experimented with interface
strategies (spoken output only, tabular output only, re-
sponse summaries, pataphrase, degree initiative taken by
the system may be more or less appropriate for different
users and different tasks and all can dramatically affect
the type of data resulting).

MADCOW s recent accomplishments include:

e Release of 14,000 utterances for training and test,
including speech and transcriptions;

* Release of almost 10,000 annotated utterances (7000
training utterances and three test sets of 2300 ut-
terances total), balanced by site;

» A bug reporting and bug fix mechanism, to maintain
the quality and consistency of the training data;

¢ An evaluation schedule that delivered training data
and froze changes in the principles of interpretation?
several months before the evaluation;

e An experiment with “end-to-end” evaluation that
permits evaluation of system aspects not previously
possible.

Table 1 sﬁows the breakdown of all training data and Ta-
ble 2 shows the breakdown for just the annotated data?.

2. Current Evaluation Methodology

When the ATIS task was developed in 1990 {9}, lit-
tle work had been done on formal evaluation of under-

T These aue the principles that define how va-‘ous vague or wif
ficult phrases are to be interpreted; see section 2.1 below.

2A class A utterance can be interpreted by itself, with no ad-
ditional context; a class D utterance requires an earlier “context-
setting” utterance for its interpretation; and a class X utterance
cannot be evaluated in terms of a reference database answer.
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Site Speakers | Scenarios | Utterances
AT&T 50 176 1887
BBN 62 307 2277
CMU 43 196 2480
MIT 75 250 2265
MIT: old DB 96 320 2940
SRI 781 130 7126
TOTAL 407 1379 13675 |

Table 1: Multi-site ATIS Data Summary

standing for natural language interfaces ®. In the ab-
sence of a generally accepted semantic representation,
the DARPA SLS community focussed instead on “the
right answer,” as defined in terms of a database query
task (air travel planning). This permitted evaluation by
comparing “canonical” database answers to the system
answers using a comparator program [1]. There was con-
sensus that coming to agrecment on what constituted the
right set of data from a database for any query answer-
able via database retrieval (given proper definitions of
terms) would be far easier than coming to agreement on
a standard semantic representation.

The original evaluation methodology was defined only
for context-independent (class A) utterances. However,
this left approximately half the data as unevaluable (see
Table 2). Over the next two years, the evaluation
method was extended to cover context-dependent queries
(class D utterances), it was tightened by requiring that
a correct answer lie within a minimal answer and a max-
imal answer (see section 2.1), and it was made more
realistic by presenting utterances in scenario order, as
spoken during the data collection phase, with no infor-
mation about the class of an utterance. Thus, we now
can evaluate on approximately 75% of the data (all non-
class X data - see Tables 2 and 4). Because, at least

3This coincides with the beginnings of formal evaluation for
written text, via the Message Understanding Conferences (MUCs)
[8]. The MUC evaluation uses a domain-specific filled template as
the basis for evaluation. To date, the goal of a domain-independent
semantic representation, perhaps analogous to the minimal brack-
eting of the Penn Treebank database [2] for parsing, remains
elusive.

Site Class A Class D Class X Total
ATT 396 37.4% | 416 39.3% | 247 23.3% | 1059 14.8% |
BBN 858 56.2% | 357 23.4% | 312 20.4% | 1527 21.4%
CMU $3937.5% { 324226% | 57338.9% | 1436 20.1%
MIT 66337.7% | 68038.7% | 414 23.6% | 1757 24.6%
SRI 607 44.8% | 58243.0% | 166 12.3% | 1355 19.0%
Total | 3063 42.9% | <3t0 33.1% | 1712 24.0% | 7134 100.0% |

Table 2: Distribution of the Annotated Training Data

in some applications, wrong answers may be worse than
“no answer” we have used a Weighled Error metric:
follows:*

WeightedError =
#(No_Answer) + 2 « #(Wrong_Answer).

2.1. The Evaluation Mechanism

The comparator-based evaluation method compares
human annotator-generated canonical (“.clerence™)
database answers to system generated answers. The
annotators first classify utterances into context-
independent (A), context-dependent (D) and unevalu-
able (X) classes. Each evaluable utterance {class A or
D) is then given minimal and maximal reference an-
swers. The minimal reference answer is generated using
NLParse® and the maximal answer is generated algorith-
mically from the minimal answer. A correct answer must
include all of the tuples contained in the minimal answer
and no more tuples than contained in the maximal an-
swer.

The Principles of Interpretation provides an explicit in-
terpretation for vague natural language expressions, e.g.,
“red-eye flight”, “mid-afternoon,” and specifies other
factors necessary to define reference answers, e.g., how
context can override ambiguity in certain cases, or how
utterances should be classified if they depend on previ-
ous unevaluable utterances. This document is a point of
common teference for the annotators and the system de-
velopers, and permits evaluation of sentences that other-
wise would be too vague to have a well-defined database
reference answer. The initial Principles of Interpreta-
tion was implemented in 1990. The document is now
about 10 pages long, and includes interpretation deci-
sions based on some 10,000 ATIS utterances. The doc-
ument continues to grow, though over time fewer new
issues arise. It is remarkable that such a small docu-
ment has sufficed to provide well-defined interpretations
for a corpus of this size. This demonstrates that rules
for the interpretation of natural language utterances, at
least in the ATIS domain, can be codified well enough to
support an automatic evaluation process. Because this
procedure was explicit and well-documented, two new
sites were able to participate in the most recent evalua-
tion (November 1992).

4The decision to call A wrong answer twice as bad as not an-
swering was made to reflect an intuition that misinformation was
worse than explicit refusal to answer. However, a recent experi-
ment [5] showed that for one system, subjects were able to detect
a system error without losing any additional turns in 90% of the
cases. In the remaining 10%, a system error caused the subject to
lose several turns before recovering, leading to a reduced estimated
weighting factor for system errors of 1.25.

>NLParse is a database access product of Texas Instruments.
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2.2. Testing on the MADCOW Data

The test data selection procedure was designed to en-
sure a balanced test set. Test data for the November
1992 evaluation were chosen using procedures similar to
those for the November 1991 test [3]. As sites submitted
data to NIST, NIST set aside approximately 20% of the
utterances to create a pool of potential test data; some
1200 utterances were included in the November 1991 test
set; 1300 utterances were included in the November 1992
test set.

NIST’s goal was to select approximately 1000 test utter-
ances from the test data pool, evenly balanced among
the five collection sites (AT&T, BBN, CMU, MIT, and
SRI)}. Utterances were selected by session, i.e., utterances
occurring in one problem-solving scenario were selected
as a group, avoiding sessions that seemed to be extreme
outliers {(e.g., in number of class X utterances, total num-
ber of utterances, or number of repeated utterances).
Because the test pool contained only marginally more
utterances than were needed for the test, it was not pos-
sible to simultaneously balance the test set for number
of speakers, gender, or subject-scenarios. The test set
contained 1002 utterances. The breakdown of the data
is shown in Table 3.

NIST verified and corrected the original transcriptions.
However, some uncertainty about the transcriptions re-
mained, due to inadequacies in the specifications for the
transcription of dificult-to-understand speech, such as
sotte voce speech. After the transcriptions were veri-
fied, the data were annotated by SRI to produce catego-
rizations and reference answers. A period for adjudica-
tion followed the test, where testing sites could request
changes to ths test data categorizations, reference an-
swers, and transcriptions. The final post-adjudication
classification summary is shown in Table 4. Final evalu-
ation results are reported in [6).

Collecting Site Speakers Scenarios | Utterances
ATT 7; 1M/ 6F 22 200
BBN 7; 3M/ 4F 28 201
CMU 4; 4M/ OF 12 200
MIT 10; 3M/ 7F 37 201
SRI 9; 5M/ 4F 19 200
Total 37, 16M/21F 118 1002

Table 3: Multi-site ATIS Test Data November 1992

3. Limitations of the Current
Evaluation
The current data collection and evaluation paradigm

captures important dimensions of system behavior.
However, we must constantly re-assess our evaluation

procedures in terms of our goals, to insure that our eval-
uation procedures can help us assess the suitability of
a particular technology for a particular application, and
to insure that benchmark scores will correlate well with
user sa‘isfaction and efficiency when the technology is
transferred to an application.

The advantage of using a pre-recorded corpus for eval-
uation is clear: the same data are used as input to all
systems under evaluation, and each system’s set of an-
swers s used to automatically generate a benchmark
score. This approach provides a uniform input across
all systems and removes human involvement from the
benchmark testing process (except that human annota-
tors define the reference answers). Any annotated set of
data can be used repeatedly for iterative training. How-
ever, some of these same strengths impose limitations on
what we can evaluate.

First, there is the issue of the match between the refer-
ence answer and the user’s need for useful information.
The method can count answers as correct despite sys-
tem misunderstanding: e.g., a system misrecognition of
“Tuesday” that substitutes “Wednesday” may in a para-
phrase of the understanding lead the user to believe the
answer is wrong, but if all flights have daily departures,
the database answer will be canonically correct. On the
other hand, useful (but not strictly correct) answers will
be counted wrong, because there is no “partially correct”
category for answers.

Second, mixed initiative in human-machine dialogue will
be required for technology transfer in many spoken
language understanding applications. But the evalua-
tion paradigm actively discourages experimentation with
mixed initiative. A query that is a response to a system-
initiated query is classified as unevaluable if the user’s
response can only be understood in the context of the
system’s query. During evaluation, any system response
that is a query will automatically be counted as incorrect
(since only database answers can be correct).

The use of pre-recorded data also preserves artifacts of
the data collection system. For example, much of the
test data were collected using systems or components of
systems to generate responses that are presumed to be
less accurate than a human would be. As a result, the
data include many instances of system errors that affect
the user’s next query. A user may have to repeat a query
several times, or the user may correct some error that
the data collection system (but not the system under
evaluation) made. These are artificial phenomena that
would disappear if the data collection and evaluation
systems were identical.
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Site Class A Class D Class X Total
ATT 48 (24.0%) | 41 (20.5%) | 111 ( 55.5%) 200 ( 20.0%
BBN 97 (48.3%) | 27 (13.4%) | 77 ( 38.3%) 201 ( 20.1%)
CMU 76 ( 38.0%) | 66 ( 33.0%) | 58 ( 29.0%) 200 ( 20.0%)
MIT 100 ( 49.8%) | 67 ( 33.3%) | 34 ( 16.9%) 201 ( 20.1%)
SRI 106 ( 53.0%) | 46 ( 23.0%) | 48 ( 24.0%) 200 ( 20.0%)
Total: | 427 ( 42.6%) | 247 ( 24.7%) | 328 ( 32.7%) | 1002 (100.0%)

Table 4: Breakdown of Test Data by Class

Finally, the current paradigm does not take into account
the speed of the response, which greatly affects the over-
all interaction. Demonstration systems at several sites
have begun to diverge from those used in benchmark
evaluations, in part, because the requirements of demon-
strating or using the system are quite different from the
requirements for generating reference database answers.

These limitations of the comparator-based evaluation
.preclude the evaluation of strategies that are fundamen-
tal research issues and that are likely to be crucial in
technology transfer. In particular, we need to develop
metrics that keep human subjects in the loop and sup-
port human-machine interaction. However, the use of
human subjects introduces new issues in experimental
design. Over the past year, MADCOW has begun to
address these issues by designing a trial end-to-end eval-
uation.

4. End-to-End Evaluation Experiment

The end-to-end evaluation, designed to complement the
comparator-based evaluation, included 1) objective mea-
sures such as timing information, and time to task com-
pletion, 2) human-derived judgements on correctness of
system answers and user solutions (logfile evaluation),
and 3) a user satisfaction questionnaire.

The unit of analysis for the new evaluation was a sce-
nario, as completed by a single subject, using a partic-
ular system. This kept the user in the loop, permitting
each system to be evaluated on its own inputs and out-
puts. The use of human evaluators allowed for assess-
ing partial correctness, and provided the opportunity to
score other system actions, such as mixed initiatives, er-
ror responses and diagnostic messages. The end-to-end
evaluation included both task-level metrics (whether sce-
narios had been solved correctly and the time it took a
subject to solve a scenario) and utterance-level metrics
{query characteristics, system response characteristics,
the durations of individual transactions).

A-86

4.1. Experimental Design

An experimental evaluation tock place in October 1992,
to assess feasibility of the new evaluation method. We
defined a common experimental design protocol and a
common set of subject instructions (allowing some lo-
cal variation). Each site submitted to NIST four travel
planning scenarios that had a well-defined “solution set”.
From these, NIST assembled two sets of four scenarios.
Each site then ran eight subjects, each doing four scenar-
ios, in a counter-balanced design. Five systems partici-
pated: the BBN, CMU, MIT and SRI spoken !anguage
systems, and the Paramax system using typed input.

4.2. Logfile Evaluation

A novel feature of the end-to-end experiment was the
logfile evaluation. This technique, developed at MIT [7],
is based on the logfile which records and timestamps all
user/system interactions. A human evaluator, using an
interactive program,®, can review each user/system in-
teraction and evaluate it by type of user request, type
of system response, and correctness or appropriateness
of response. For user requests, the following responses
were distinguished: 1) New Information, 2) Repeat,
3) Rephrase, or 4) Unevaluable. For system responses,
the evaluators categorized each response as follows:

Answer: further evaluated as Correct, Incorrect
Partially Correct or Can’t Decide;

System Initiated Direclive: further evaluated as
Appropriate, Inappropriale, or Can’t Decide;

Failure-to- Understand Message: no further evaluation;

Diagnostic Message: further evaluated as Appropriate,
Inappropriate, or Can’t Decide.

The evaluator also assessed the scenario solution, ac-
cording to whether the subject finished and whether the
answer belonged to the defined solution set.

To facilitate determination of the correctness of individ-
ual system responses, we agreed to follow the Princi-

The program was developed by David Goodine at MIT: the
evaluator instructions were written by Lynette Hirschman, with
help from Lyn Bates, Christine Pao and the rest of MADCOW.




ples of Interpretation, at least to the extent that an an-
swer judged correct by these Principles would not be
counted incorrect. For this experiment, logfile evalua-
tion was performed independentiy by Bill Fisher (NIST)
and Kate Hunicke-Smith (SR] Annotation), as well as by
volunteers at MIT and BBN. This gave us experience in
looking at the variability among evaluators of different
levels of experience. We found that any two evaluators
agreed about 90% of the time, and agreement among
multiple evaluators decreased proportionally.

5. Lessons Learned

The experiment provided useful feedback on the risks
and advantages of end-to-end evaluation, and provides
the basis for a refined evaluation procedure. For the ini-
tial trial, we made methodological compromises in sev-
eral areas: a small number of subjects, no control over
cross-site subject variability, few guidelines in develop-
ing or selecting scenarios. These compromises seemed
reasonable to get the experiment started; however, the
next iteration of end-to-end evaluation will need to in-
troduce methodological changes to provide statistically
valid data.

5.1. Sources of Variability

Valid comparisions of systems across sites require control
over major sources of variability, so that the differences
of interest can emerge. The use of human subjects in the
evaluation creates a major source of variability, due to
differences in the subjects pools available at various sites
and the characteristics of individuals. We can minimize
some of these differences by, for example, by training all
subjects to the same criterion across sites {to account
for differences in background and familiarity with the
domain), by using many subjects from each site (so that
any one subject’s idiosyncrasies have less of an effect on
the results), and by ensuring that procedures for subject
recruitment and data collection across sites are as similar
as possible (we made a serious effort in this direction, Lut
more could be done to reduce the cross-site variability
that i1s otherwise confounded with the system under eval-
uation). An alternative would be to perform the eval-
uation at a common site. This would allow for greater
uniformity in the data collection procedure, it could in-
crease the uniformity of the subject pool, and would
allow use of powerful experimental techniques (such as
within-subject designs). Such a common-site evaluation,
however, would pose other challenges, including the port
of each system to a common site and platform, and the
complex design needed to assess potential scenario order
effects, system order eflects, and their interaction.

Another source of variability is the set of travel plan-

ning scenarios the subjects were asked to solve. Certain
scenarios posed serious problems for all systems: a few
scenarios posed particular problems for specific . vstems.
However, the data suggest that there was a subset that
could perform a . "ascuable diagnostic function.

5.2. Logfile Evaluation

Somewhat unexpectedly, we found that logfile evalua-
tion was a useful too] for system developers in identi-
fving dialogue-related problems in there systems. The
evaluator interface allowed for rapid evaluation {about
5-15 minutes per scenario). However, the evaluator in-
structions appear to need refinement, the interface needs
minor extensions, and most important, we need to de-
sign a procedure to produce a statistically reliable logfile
evaluation score. In addition to the methods for achiev-
ing this reliability that have been outlined in the pre-
vious section, we would also like to consider combining
assessments from evaluators.

A remaining thorny problem is the definition of correct,
partially correct, and incorrect answers. For this experi-
ment, we used the Principles of Interpretation document
to define a correct answer, so that we would not need to
develop a new document for these purposes. For the next
evaluation, we need definitions that reflect utility to the
user, not just “canonical” correctness.

Finally, we found that we could not rely on subjects to
correctly complete the scenarios presented to them. In
some cases, the subject was not able to find the answer,
and in other cases, the subject did not follow directions
regarding what information to provide in the answer.
This made it difficult to compute accurate statistics for
scenario-level metrics such as task completion and task
completion time; this problem was exacerbated by the
limited amount of data we collected.

5.3. Summary and Conclusions

Our goal in end-to-end evaluation is to create a pro-
cedure that accurately assesses the usability of current
spoken language technology and provides useful feedback
for the improvement of this technology. To be useful, the
procedure must reliably identify differences between sys-
tems and must embody a clear understanding of which
system attributes are desirable and should be improved
over time. In developing evaluation procedures that in-
volve human interactions, we need to carefully assess the
validity of the measures we use. For example a measure
such as the number of utterances per scenario may seem
relevant (e.g., the subject was frustrated with answers
and had to repeat a question several times), but in fact
may reflect irrelevant aspects of the process (the subject
was intrigued by the system and wanted to push its lim-
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its in various ways). Meaningful evaluation will require
metrics that have been systematically investigated and
have been shown to measure relevant properties.

6. Future Directions

We view evaluation as iterative; at each evaluation,
we assess our procedures and try to improve them.
The comparator-based evaluation is now stable and the
November 1992 evaluation ran very smoothly. We plan
to continue our experiments with end-to-end evaluation,
to work out some of the methodological problems de-
scribed in the previous section. In addition, work on
database expansion and portability will affect onging
data collection and evaluation efforts.

The ATIS relational database has been expanded from 11
cities to 46 cities, to provide a more realistic task sup-
porting more challenging scenarios. The new database
was constructed using data from the Official Airline
Guide and now includes 23,457 flights {compared to 765
flights). The set of new cities was limited to 46 because
it was felt that a larger set would result in an unwieldy
database and would thus require the sites to devote too
many resources to issues peripheral to their research,
such as database management and query optimization.
Data collection on this larger database is now beginning.

The portability of the technology (from application to
application, and from language to language) becomes an
increasing challenge as the technology improves, since
more potential applications become possible. It still
takes many hours of data collection and several person
months of system development to port an application
from one domain (e.g., air travel) to another similar do-
main (e.g., schedule management). Evaluating portabil-
ity is still more challenging. Evaluation has a significant
cost: the comparator-based method requires the defi-
nition of a training corpus and its collection, defining
principles of interpretation, and (most expensively) the
annotation of data. Therefore, if we believe that regular
evaluations play an important role in guiding research,
we need to find cost-effective ways of evaluating systems.
End-to-end evaluation can provide some low-overhead
techniques for quickly evaluating system performance in
new domains.

6.1. Conclusion

MADCOW has played a central role in developing and
coordinating the multi-site data collection and evalua-
tion paradigm. It will also play an active role in defining
new methodologies, such as end-to-end evaluation, to
support evaluation of interactive spoken language sys-
tems. We believe that end-to-end evaluation will allow us
to assess the trade-offs among various component-level

decisions (in speech recognition, natural language pro-
cessing and interface design), bringing spoken language
systems closer to eventual deployment.
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ABSTRACT

A current goa! in spoken language understanding
research is to combine the robustness of domain-specific
template fillers (e.g., script and case frame-based sys-
tems) with the syntactic coverage of parser-based sys-
tems. This paper describes an integration of a pair of
systems representing each of these types into a new sys-
tem that takes advantage of their complementary
strengths.

INTRODUCTION

Building a natural language system for written text
with high coverage is notoriously difficult; the range
and variability of human language are tremendous. The
task of building a spoken language system, however,
poses an additional set of challenges. For one thing,
current speech recognition systems are far from perfect;
a 10% word-recognition error rate over a 1000-word
domain is considered very good. Furthermore, difficult
phenomena such as run-on sentences, fragments, false
starts, flexible constituent ordering and infelicitous
word choice sre especially prevalent in spontaneous
spoken language. These phenomena pose difficult
problems for parser-based natural language understand-
ing systems, because the grammars they use are often
designed to expect well-formed complete sentences.

Template filling systems typically fill siots in do-
main-specific templates by matching fixed patterns
against portions of an input string. These systems may
be able to produce interpretations without accounting
for every word in the utterance, and without knowledge
of the syntactic structure of the entire utterance. This
fact Jends these systems a degree of robustness to
recognition errors, and to the difficult and unexpected
phenomena often encountered in spontaneous speech.

It is often impossible, however, to correctly inter-
pret & sentence without knowing its syntactic structure.
The syntactic relation of a word or phrase to other parts
of the sentence may be impossible to determine from the
local context of the word or phrase, and yet may be nec-
essary for grasping the meaning of the sentence. The
work report::d here attempts to combine into a single
systemn the capabilities of parser-based natural language
systems with the robustness of template fillers.
Similarly motivated work has been done on building
semantic interpretations from partial parses (e.g., [1,
2]). Our work differs primarily in that our basic inter-
pretation mechanism is temp.ate filling.

The systems described here have been developed
for the Air Trave! Information System (ATIS) task.
This is the common task for sites participating in the
DARPA Spoken Language Systems project. The sys-
tems have been developed and tested on actual sponta-
neous speech data collected from naive users presented
with gir travel planning scenarios. The ATIS corpus
currently consists of over 10,000 such spoken
utterances.

THE TEMPLATE MATCHER

The Template Maicher [3] was developed at SRI
specifically to handle the sorts of spontaneous speech
phenomena that are difficult for a parser-based system.
The main operation of the Template Matcher is the fili-
ing in of domain-specific templates. For example, tem-
plates for the air travel domain include the flight, fare
and ground transportation templates. Templates are as-
sociated with slots, which are filled with information
from the input sentence. So, for example, the input
sentence "Show me the flights from Boston to Dallas on
United” produces the following template:

{flight, {origin, BOSTON], [destination, DALLAS],
[airline, UNITED)]

Slots are filied by matching fixed phrases against the in-
put sentence. The origin slot, for example, may be
filled if part of the sentence matches iy of the follow-
ing patterns: “from <airport-or-city>,” “out of
<airport-or-city>" or "between <airport-or-city> and
<airport-or-city>."

The system builds a template with the set of slots
that maximizes use of the words of the sentence
(ignoring smali function werds). It then assigns a score
to the resulting filled template, which reflects how much
of the input sentence was used in building the template.
The higher the score, the greater the likelihood that the
template is correct. The system decides whether to an-
swer the query by comparing the score to a threshold
parameter. This threshold allows for a certain amount
of risk trade-off. The system can set the threshold low
to maximize the number of correct answers, or it can set
the threshold high to minimize the number of wrong an-
swers.

The ability of the Template Matcher to successfully
interpret most spontaneous speech in the ATIS domain is

testified to by the results of the latest DARPA bench-
mark tests. On the natural-language-only test, where
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systems ~re given the correct transcription of each ut-
terance as input, the system achieved the following re-
sults:

Right Wrong No Answer
533 60 94

while on the spoken language system test, where utter-
ances are nassed through the speech recognizer to the
natural lan. uage component, the results were:

Right Wrong No Answer
444 69 174

(Systems are evaluated on a subset of the ATIS corpus
that has not previously been seen by system developers.
Responses are evaluated by comparing them with the
database answers produced by trained annotators. A
wrong answer is considered twice as bad as no answer.)
Despite these promising results, it is clear that the
Template Matcher is incapable of correctly interpreting
m .ny types of utterances, since it ;.as no knowledge of
syntactic structure. Although it might be possible to
exiend “he Template Matcher to have extremely high
coverage of actual speakers' utterances in the ATIS do-
main, its coverage could never be perfect.
Furthermore, in other domains it might noi be possible
to obtain as good coverage with the same sort of system.

GEMINI

In parallel wita the development of the Template
Matcher, SRI has been developing a parser-based natural
language system known as "Gemini.” Thus, an obvious
approach to building a system that combined robust in-
terpretation with parsing ~apabilities was to integrate
these two existing systems whose strengths are comple-
mentary.

Gemini, an extension and reimplementation of the
Core Language Engine [4], is based upon an efficient
bottom-up parser and a domain independent unification
grammar. [t incorporates a bottom-up parser [5] so that
an integrated system of the sort we are describing here
can be successful when the parser is unable to parse the
entire input utterance. For a pure bottom-up parser
finds all the structure it can in the utterance, while a
top-down, left-to-right parser ceases to find structure
beyond the point in the sentence where it gets stuck. In
many cases, the partial structure that only a bottom-up
parser would finu is what is needed to help the Template
Matcher correctly interpret the utterance.

Unfortur-tely, pure bottom-up parsing is ineffi-
cient, largely because of the probiem of gaps. Gaps are
positions in an input sentence where a category is real-
ized by the empty string. For example, in the sentence
"What cities does American fly to from Boston?" an
empty noun phrase appears between "to" and “from."”
Gaps must be filled by material elsewhere in the sen-
tence; in our example, the phrase “what cities” fills the
NP gap. In contrast, the string "American flies to” will
not parse because, although an NP gap may be hypothe-
sized after the word "to.” there is nothing to fill it.

Since a bottom-uy parser does not impose any left-
context constraints, it will hypothesize every possible
gap at every position of a sentence, even when there are
no poteatial gap-fillers. Since gaps do not require 2
match against the input string, .hiz results in a large
number of hypotheses that lead nowhere, which, in tum,
negatively impacts parsing efficiency. Gemini avoids
this problem by not doing pure bottom-up parsing. It
imposes limited top-down constraunts to cut down on the
proliferation of hypotheses. The set of categories in the
grammar are partitioned into those that are context-de
pendent and those that are context-independent. Conter'
dependent categories are hypothesized only when pre-
dicted by left context. For example, categories contain-
ing wh-gaps (such as a verb phrase with an object gap)
are context dependent; they are only hypothesized if a
wh-element appears earlier in the sentence. The Gemini
parser can easily be parameterized to impose nore or
fewer top down constraints.

Gemini also can apply sorts restrictions as it parses.
So, for example, although the sentence, "How many
flights fly on lurge aircraft after five PM?” has at least
two possible parses (depending or whether “after five
PM" modifies “aircraft” or "fly”), Gemini knows that a
time restriction may modify a flying event. but not an
aircraft, so if sorts restrictions ire applied, only one of
the two parses will be produced.

On a corpus of 2139 sentences, Gemini generates at
least one parse for 2039 (95%). It generates parses that
meet sorts restricticns for 1915 (90%).

INTEGRATION OF THE TWO SYSTEMS

The new system is an enhancement of the Template
Matcher that makes use of structural information found
by Gemini in building templates. Filled slots are identi-
fied by pattern matches against the input string, and then
passed up the phrase structure tree during which they
may be combined or altered if certain conditions obtain.
Two mechanisms are invoked to select the best parse
when there are muitiple candidates: 1) the sorts package
mentioned above which filters out many semantically
anomalous parses, and 2) a2 syntactic parse-preference
mechanism that implements an algorithm due to Pereira
favoring low attachment [6]. A template is then bailt
that accounts for as many words and constructions in the
input as possible. This approach allows v~ to handle
problems such as modifier attachment and scope resolu-
tion that would be difficult or impossible for a pure
template-matching system.

For example, consider the problem of modifier at-
tachment posed by the following sentence:

"Show me flights arriving in Boston on 747s before
ten.”

The problem for the Template Matcher is that the time
specification "before ten" should constrain the flight ar-
rival time, but there is no way to tell this by looking at
the phrase "before ten” in isolation. To know that the
restriction constrains the arrival time, and ant the
departure time, the system needs to know that "before
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ten” modifies "armiving.”

In order to see how the gystem works, let us exam-
ine how the system would process the above example.

Step 1. The Template Matcher locates ali the
phrases that match slot-filling patterns (see Figure 1).
Notice that a phrase may fill more than one slot. For
example, the phrase "in Boston” may fill the
ground_city slot of a ground transportation template
{c.g.. "Show me ground transponation in Boston"), or
the "in” slot of 2 flight template. The "arrive” and "in"
slots are actually special temporary slots; they will never
appear in a template. In cenain circumstances, as we
shall see, these slots may combine to form a destination
slot, which does appear in the final template.

Step 2: The Gemini parser is run and builds the
left two parse trees shown in Figure 2. The tree on the
far right will not be built because it violates sorts re-
strictions (time restrictions do not modify 747s).

Step 3: When we pass slots up the two parse trees,
the “"arrive” and "in" slots combine to form s
"destination” slot with "BOSTON" as its filler. In addi-
tion, in one tree, the “arrive” and "before” slots com-
bine to form an “arriving_before” slot, while in the
other tree, the “before” slot turns into &
“departing_before” slot, because that is the default. The
nodes where slots are combined or altered are circled
(Figure 2).

Step 4: Since & syntactic ambiguity has produced
conflicting sets of slots, the parse preference mechanism
is now invoked, which favors "low sttachment ™ (It also
favors something called "minimal sttachment™ which
will not be discussed.) We will render the notion of low
attachment precise below, but the basic idea should be
clear; the tree in the middle in Fig. 2 is preferred be-
cause the "before ten” phrase is attached lower than in
the tree on the left.

The main insight of the Pereira paper {6] on which
the parse preference mechanism is based was that low
sttachment could be optimized in a shift-reduce parser
by preferring shifts over reduces during the course of
parsing. This preference, however, can be equally well
be imposed as 8 post hoc comparison metric on com-
plete parse trees. To compare two parse trees, find the
sequences of shift-reduce operations needed to produce
those trees, then find the first position at which there is
a shift operation in one sequence and a reduce operation
in the other. The tree corresponding to the sequence
with the shift operation is the preferred one.

To construct the sequence of shift and reduce op-
erations comesponding 1o a given parse tree, do a post-
order traversal of the tree, and, at cach step, add a shift
to the sequence, if the current node is a leaf, and, add a
reduce, if it is not. Applying this procedure to the two
parse trees above (and ignoning unit reductions), we see

{ground_city,

BOSTON])
[in,

[arrive, yeos] BOSTON} [eircraft, 747] ([before, 10)

Show me flights arriving in Boston on 747's Dbefore ten.

Fig. 1 - Filled slots for the example.

flights

flights betore ten

on 747s

artivin 6
0 arriving

in Boston in Boston

[idestination, BOSTON)],
{aircratt, 747),
{ceparung_before, 10}]

{aircratt, 747],
{arriving_before,

before ten

tlights

artiving

in Boston
747s

before ten

f[aestination, BOSTON),

10]]

Figure 2 - Parse trees for the example.
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that the tree on the left corresponds to the sequence
"SSSSRRSSRRRSSRR,” while the tree in the middle
corresponds to the sequence "SSSSRRSSRRSSRRR.”
Since, in the eleventh position, the first sequence has a
reduce while the second sequence has a shift, the second
sequence (and hence the tree in the middle) is preferred.
Step 5: Now that the appropriate set of slots has
been found, the system inserts them in a flight template
and passes that template to the database query generation
component. A database query is produced and the ap-
propriate data are retrieved and presented to the user.

RESULTS

From a corpus of spoken utterances collected from
naive users in the air travel domain, we assembled a test
set of 64 utterances that raised nontrivial modifier at-
tachment problems. Of these 64 seatences, the system
we describe here was able to correctly interpret 57.
The remaining 7 sentences do not raise great difficulties;
most could be handled with simple improvements to the
grammar.

OTHER APPLICATIONS

Preliminary work has been done to handle prob-
lems of scope resolution. To allow templates to reflect
scope information, the syntax of templates was extended.
For example, to indicate the scope of the negation in the
sentence "I want American flights not leaving after
five,” the template produced is:

(flight, {airline, AMERICAN], [not, [[departing_after,
{500, 170011111

An arbitrary number of slots can be embedded within
the "not” operator. Similar constructs allow templates
to reflect the scope of superlatives and coordinated
constituents.

Without help from a parser, the Template Matcher
would misinterpret many queries involving negation,
since the word signalling the negation (i.¢., "not") may
be far removed from the negated constraint. A system
that interprets phrases with regard to their immediate
context only will be unable to handle negation in a gen-
eral way. The integrated system handles negation scope
in much the same way 2s it handles modifier attachment.
Filled slots are passe¢ .p the phrase structure tree, and
under the right conditions wrapped in the negation op-
eratar. For example, when a verb phrase is combined
with the lexical item "not” to form a new verb phrase,
the filled slots associated with the embedded verb phrase
are embedded in the negation operator.

Of course, there are many cases where something
more sophisticated is needed. Consider, for example,
the query "Show me flights not arriving in Dallas after
five P M." Presumably the correct response in this case
is to show all flights that do have a destination of Dallas
but do not arrive after five P M. Our current system
would show, in addition, all the flights in the database
not flying to Dallas. Despite this, the current treatment
of negation seems to be an improvement over what was
available with the Template Matcher alone.
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Abstract

In this paper, we describe the Template Matcher, a sys-
tem built at SRI to provide robust natural-language
interpretation in the Air Travel Information System
(ATIS) domain. The system appears to be robust to
both speech recognition errors and unanticipated or dif-
ficult locutions used by speakers. We explain the mo-
tivation for the Template Matcher, describe in general
terms how it works in comparison with similar systems,
and examine its performance. We discuss some limita-
tions of this approach, and sketch a plan for integrating
the Template Matcher with an analytic parser, which we
believe will combine the advantages of both.

Introduction

One of the conclusions SRI has drawn from working with
the TIS common task data is that, even with a very
con:.: ained user task, there will always be unanticipated
expressions and difficult constructions in the spoken lan-
guage elicted by the task that will cause problems for
a conventional, analytical approach to natural-language
processing. However, it also seems that requests for only
a few types of information account for a very large pro-
portion of the utterances produced by users performing
a task like air travel planning. This point is illustrated
by some of the more difficult queries in the June 1990
test set:

Give me a list of all airfares for round-trip tick-
ets from Dallas to Boston flying on American
Airlines.

Show me all the flights and their fares from San
Francisco to Boston on June second.

I need information on airlines servicing Boston
flying from Dallas.

In the first example the phrase “flying on American
Airlines” apparently modifies “tickets,” with the flights
that the tickets are for apparently being the implied sub-
ject of “flying.” The second example seems to contain
a discontinuous constituent, “flights ... from San Fran-
cisco to Boston on June second,” which is the antecedent
of the pronoun “their” that occurs in the middle of the

discontinuity. The third example would be straightfor-
ward, except for the fact that the verb “servicing” has
been substituted for the more conventional “serving.”
Despite the difficult linguistic problems posed by these
queries, the information they request is very simple—
just fares, flights, and airlines for travel between a pair
of specified cities.

Consideration of examples such as these has led us to
modify our approach to natural-language processing in
spoken language systems. The key modification to our
system is the addition of a Template Matcher to pro-
vide robust interpretation for the most common types
of requests in the task domain. The Template Matcher
achieves robustness in two ways: (1) it provides an inter-
pretation when not all the words or constructions in an
utterance have been accounted for, and (2) it provides
a mechanism for trading-off the risk of wrong answers
with the degree of coverage. These properties arise from
a mechanism that assigns scores to interpretations, pe-
nalizing interpretations that do not account for words
in the utterance. The bulk of this paper is devoted to
describing the Template Matcher and discussing its per-
formance as a stand-alone system for interpretation of
natural-language queries for the ATIS task. Later in the
paper we consider how such a module might best fit into
a complete system for spoken-language understanding.

Description of the System

The Template Matcher operates by trying to build “tem-
plates” from information it finds in the sentence. Based
on an analysis of the types of sentences observed in the
ATIS corpus, we devised four templates that account
for most of the data: flight, fare, ground transportation,
and meanings of codes and headings. We have recently
added several new templates, including aircraft, city, air-
line, and airport. Templates consist of slots which the
Template Matcher fills with information contained in the
user input. Slots are filled by looking through the sen-
tence for particular kinds of short phrases. For example,
“from” followed by an airport or city name will cause
the “origin” slot to be filled with the appropriate name.
The sentence

A-93




Show me all the United flights Boston to Dallas
nonstop on the third of November leaving after
four in the afternoon.

would generate the following flight template:

[flight, [stops,nonstopl,
[airline,UA],
[origin,BOSTON],
[destination,DALLAS],
[departing_after, {1600]1],
{date, [november,3,current_year]]]

The template score is basically the percentage of words
in the scntence that contribute in some way to the build-
ing of that template. Given an input sentence, the Tem-
plate Matcher constructs one templateof each sort, and
the one with the best score is used to comstruct the
database query, provided its score is greater than a cer-
tain “cut-ofi” parameter. The cut-off parameter is what
permits the risk trade-off mentioned above: the higher
the cut-off, the more conservative the system is in at-
tempting to produce a response. Words can contribute
to a score in different ways: words that fill a slot (e.g.,
“Boston”) add to the score, words that help get a slot
filled (e.g. “from”) also add to the score. Some words
may not contribute to the interpretation, but nonethe-
less confirm the choice of a particular template (e.g.,
“downtown” for the ground transportation template),
and hence are added to the score for that template.
Other words are ignored for the purposes of scoring (e.g.,
“and,” “please,” “ok,” and “show”), since they do not
tend to confirm particular templates.

In certain cases the Template Matcher may modify the
basic score of a template. Each template has a set of key
words (or key phrases). The presence of these words or
phrases in a sentence is a strong indication that the asso-
ciated template is the appropriate one for that sentence.
For the flight template, the keywords include words like
“flight,” “fly,” and “go”; for the fare template, words
and phrases such as “how much,” “fare,” and “price”
are examples; for the meaning template, examples in-
clude “what is,” “explain,” and “define.” If none of a
template’s key words are present in a sentence then that
template’s score is docked by a certain keyword punish-
ment factor, which varies from template to template. In
most cases the lack of a keyword will prevent the asso-
ciated template from scoring above the cut-off.

There are two situations in which the Template
Matcher will “abort” a given template, that is, give it
a score of zero and cease processing it. First, if the sys-
tem tries to fill a slot in a certain template with two
different values, that template is aborted. Since we have
no better than a fifty-fifty chance of guessing which is the
correct filler, we are better off not attempting any an-
swer. Second, if a template has no slots filled, it will re-
ceive a score of zero. This restriction is relaxed when the
Template Matcher is operating in “context-dependent”
mode, where follow-up questions are expected. A query
like “show me the fares,” which would not fill any slots,

would be much more likely as a follow-up question than
as a context-independent query.

Comparison with Other Systems

Systems using the basic idea behind the Template
Matcher go back as least as far as the SAM system at
Yale {2], and include the Phoenix system at CMU (3, 4]
and the SCISOR system at General Electric [5] as re-
cent examples. There is also a degree of similarity to
“case-frame”-based parsing methods [6, 7). The main
distinction is that the slots in our templates are domain-
specific concepts rather than general linguistic or con-
ceptual cases.

Of these precursors, the Phoenix system seems most
similar to the Template Matcher. Like the Template
Matcher, the Phoenix system has templates (which they
call “frames”) with slots that get filled with information
from the sentence. The scoring mechanisms of the two
systems are similar, but not identical. For both, the
basic score of an interpretation is the number of words
in the sentence that the interpretation accounts for. In
the Phoenix system, for a word in a sentence to count
for an interpretation’s score, it must help fill some slot in
that interpretation’s frame. For the Template Matcher,
the word will also count if it is an “ignore” or “confirm”
word as discussed above.

There are several other differences between the scoring
mechanisms of the two systems: The Template Matcher
punishes templates that do not have a keyword present
in the sentence, and the Template Matcher requires that
at least one slot in a template be filled. Also, the two
systems behave differently when an attempt is made to
fill a single slot with two different fillers. The Template
Matcher will abort a template if this happens, while
the Phoenix system will fill the slot with the second of
the two possible fillers. The latter approach will handle
certain types of false starts, but might be expected to
yield more incorrect answers in other situations. Finally,
CMU is nut currently using a cutoff to weed out bad in-
terpretations, although given the existence of a scoring
mechanism in their system, this is something they clearly
could do.

Results

After two weeks of development this system was tested
on the June 1990 ATIS test set. This was a fair test to
the extent that the implementor of the matching rou-
tines and the templates themselves {Jackson) had not
examined the data from this test set prior to the eval-
uation. {Moore had noted, however, that the test set
queries seemed amenable to a template-matching ap-
proach). For various values of the cut-off parameter we
obtained the results shown in the following table.

A-94




Cut-off { Right | Wrong | No Answer
0.000 55 13 22
0.833 42 4 44
1.000 37 2 51

(These results were determined by visual inspection of
the templates; the database retrieval code was not imple-
mented at this point.) The conclusion we drew from this
test is that a template-matching approach could quickly
yield results that were competitive with the some of the
better results reported in the original June 1990 ATIS
test,

After completing the implementation of the system
and extensive development using the ATIS training data,
we used the Template Matcher for the February 1991
ATIS class A evaluation, in both the NL and SLS tests.
The results as measured by NIST are shown below.

Test Right | Wrong | No Answer
NL only | 109 9 27
SLS 96 11 38

We used a cut-off of 0.8 for this evaluation, as we had
previously determined from training data that this value
should come close to optimizing the number of right an-
swers minus the number of wrong answers.

The system for the SLS tests was a serial connection
of the version of SRI’'s DECIPHER system used in the
ATIS SPREC evaluation and the Template Matcher de-
scribed above. The answers reported in the SPREC eval-
uation were edited to be in lexical SNOR format and
run through the Template Matcher exactly as in the
NL tests. It is interesting to note the relatively small
degradation from the NL to the SLS results, despite a
18.0 percent word error rate in the speech recognition;
this seems to indicate the robustness of the Template
Matcher to recognition errors.

We had not planned to participate in the D1 evalua-
tion, but at the request of NIST, we did those tests as
well, taking context into account by using the answer to
the first query in the D1 pair to restrict the database
search in answering the second query, the same tech-
nique used in our ATIS demo system. In addition, the
Template Matcher was run in context-dependent mode
for the second query of each D1 pair. The results on
the second queries of the pairs as measured by NIST are
shown in the table below.

Test Right | Wrong | No Answer
NL only 22 3 i3
SLS 15 11 12

We have not yet analyzed why there was a greater degra-
dation in going from the NL to the SLS results in the
D1 tests.

Limitations

In this section, we discuss some sentences that cause
problems for the Template Matcher that are not easily
resolvable.

Show me flights returning from Dallas into San
Francisco by ten P M.

This sentence is a good example of the need for syn-
tactic information. The problem is that the Template
Matcher cannot tell that the phrase “by ten P M” mod-
ifies “returning,” and thus constrains the arrival time.
By default, it treats the “by” phrase as restricting the
departure time, and thus misinterprets the query.

What is an A fare?

The problem here is that “A” is ambiguous; it may
be either the indefinite article or a fare class code. We
have been forced to leave the fare class code “A” out of
the Template Matcher lexicon. Adding it would do more
harm than good, for we would then misinterpret every
occurence of the phrase “a fare” (with the indefinite ar-
ticle), as in “Give me a fare from Boston to Dallas.”
Syntactic information could help resolve this ambiguity,
as could speech information, since the determiner “a”
and the letter “A” have different acoustic properties.

List the fares for Delta flight eight oh seven
and Delta flight six twenty one from Dallas to
Denver.

Conjunctions of complex noun phrases are beyond the
scope of the Template Matcher as it currently stands.
The system could be modified to handle such phenom-
ena, but an analytical grammar might be the more nat-
ural tool for the job.

Do you have to take a Y N flight only at night?

This is an example of a sentence where all the words
contribute to a certain template (the flight template, in
this case) and yet that template is not the correct one.

A New Architecture

As the examples in the previous section suggest, the
Template Matcher by itself is probably not the ulti-
mate solution to the problem of robust interpretation of
natural-language queries. We believe that the template-
matching approach and an analytical parser-based ap-
proach have complementary strengths and that an ap-
proach that combines both of them is likely to be ulti-
mately superior than either one alone. We have therefore
begun developing a new architecture for language pro-
cessing in spoken language systems that combines the
two approaches. Qur basic strategy will be to use the
analysis produced by the parser whenever we can, but
to fall back on the Template Matcher when the parser-
based system fails to produce a complete analysis. It is
our conjecture, supported at least in part by the best
results reported in the June 1990 ATIS evaluation, that
an analytical, parser-based approach can be designed so
that when it succeeds in providing a complete analysis
of the input, that analysis has a very high probability
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of being correct. With the Template Matcher it seems
that there will inevitably be a larger possibility for error,
because it uses strictly less of the information available
in the utterance than a parser. In particular, our Tem-
plate Matcher can ignore words; it ignores order; and it
has almost no notion of structure. By using the Tem-
plate Matcher as a backup to the parser-based system,
we eliminate the possibility of the Template Matcher get-
ting a wrong interpretation of something that could be
successfully analyzed by the parser.

A second reason for running the Template Matcher
after the parser is to enable the Template Matcher to
use partial results of parsing in its operation. Our cur-
rent Template Matcher uses only single words and fixed
phrases as key words or slot fillers. We are in the pro-
cess of extending the Template Matcher so that it uses
whole phrases that have been identified by the parser
in attempting to analyze the entire utterance. For ex-
ample, we saw that the Template Matcher is unable to
analyze a phrase as complex as “returning from Dallas
into San Francisco by ten P M.” Generalized to work
from parsed phrases, the Template Matcher might be
able to successfully interpret a complex utterance con-
taining this phrase even if the entire utterance could not
be parsed. Additionally, running the Template Matcher
on parsed phrases should cut down on the sheer number
of particular word patterns that have to be included in
the template specifications.

The use of robust interpretation methods changes the
way in which the constraints embodied in a grammar
are viewed. They must be treated as soft, rather than
hard, constraints. This has significant implications for
the rest of a spoken language system. I we want the
parser to find grammatical fragments of the input that
may be of use to the Template Matcher, then the parsing
algorithm we previously used, which imposed strong left-
context constraints, is no longer appropriate. We want
something closer to pure bottom-up parsing to find all
the phrases that the Template Matcher might use. We
have developed such a parser, whose details are outlined
in another paper for this workshop [1].

Perhaps the most significant consequence of using ro-
bust interpretation methods in a spoken language sys-
tem, however, is that the failure to find a complete parse
can no longer be used as a hard constraint to reduce per-
plexity for the speech recognizer. An analytical grammar
still contains valuable information that should be used by
the recognizer, however. We feel that one promising ap-
proach to making use of this information is to extend the
idea of a word-based statistical language model, such as
a bi-gram model, to a phrase-based statistical language
model, e.g., a “bi-phrase” model. The idea is simply
to estimate the probability of occurrence of a particular
type of phrase conditioned on the type of phrase that
precedes it. In making this work effectively, however, it
is important to include some lexical information in the
categorization of phrases, usually information about the
lexical head of the phrase.

The ability of such a framework to capture long dis-

tance constraints not captured by N-gram models is il-
lustrated by an utterance such as “What airlines that
serve Boston fly 7475 If we want to predict the like-
lihood of “fly” occuring in this context, the preceding
word “Boston” gives us essentially no information. If,
however, we have identified “What airlines that serve
Boston” as a noun phrase whose lexical head is “air-
lines” then the likelihood of a verb whose lexical head is
“fly” should be relatively high.

The incorporation of a probabilistic element into the
system raises a number of other interesting possibilities,
including incorporation of probabilistic scoring based on
observations of likelihoods of particular templates for
sentences in the corpus, of particular slots for each tem-
plate, and of particular words for each slot; and the pos-
sibility of using the Template Matcher itself as the basis
of a statistical language model to guide recognition.

Summary

In sum, the Template Matcher represents a complemen-
tary approach to traditional natural-language process-
ing. It has the virtues of robustness and broad coverage
of many linguistic variants for requests for specific types
of information. Although we have not discussed the issue
of computational efficiency in this paper, the Template
Matcher is noticably faster than a typical parser. The
approach also has the advantage of rapid development
time which should enhance portability to new domains.
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Abstract

SRI International participated in the June 1990 Air
Travel Information System (ATIS) natural-language
evaluation. This report briefly describes the system
that SRI used in the evaluation, analyzes SRI’s results,
and makes some recommendations for changes in the
database structure and data collection system to be used
for future ATIS evaluations.

The SRI ATIS System

The natural-language processing system used by SRI in
the June 1990 ATIS evaluation is a derivative of the Core
Language Engine (CLE) developed at SRI’'s Cambridge
Research Centre in Cambridge, England [1]. At present,
the main processing components of SRI’s ATIS system
are taken from the CLE, while the grammar, semantic
interpretation rules, and lexicon are substantially new.
The system divides query processing into the following
phases:

o Lexical lookup

o Syntactic parsing

e Semantic interpretation and selectional filtering
o Quantifier scoping

¢ Database query generation

¢ Query optimization

o Database retrieval

The syntactic and semantic rules used in the parsing
and interpretation phases are expressed in a unification-
based formalism. The parser is based on a left-corner
parsing algorithm for context-free grammar that has
been generalized to apply to unification grammar by sub-
stituting unification for identity checks in dealing with
gramatical category expressions. An attribute/value no-
tation for feature constraints is provided for the grammar
writer, but this notation is compiled into ordinary term
structures by assigning, for each major category symbol,
an argument position for each feature that can occur

with that category. Grammatical unification is then im-
plemented simply as term unification in Prolog, which is
the implementation language used in the system.

In the semantic interpretation phase, logical form ex-
pressions are computed bottom-up by applying semantic
interpretation rules keyed to the syntax rules. Terms in
the logical form language have semantic sorts associated
with them, and functors are restricted with respect to
the sorts of their arguments. These sort restrictions are
applied as the logical forms are constructed, acting as
a filter on the structures produced by the syntactic and
semantic rules. The outputs of the semantic interpre-
tation phase are quasi-logical forms in which the scope
of quantified noun phrases has not yet been determined.
Quantifier scope is assigned in the next phase of process-
ing.

At this point in processing, a database-independent
formal representation of the meaning of the query has
been assigned. This is transformed into a database
query, principally by replacing the logical-form constants
and predicates derived from the lexicon with database
predicates and constants. The query is then re-ordered,
if necessary, to optimize database retrieval, and the an-
swer is retrieved from the database, which is stored as a
set of Prolog clauses.

Analysis of Results

In the blind test conducted for the June 1990 ATIS eval-
uation, out of 90 test queries, the SRI system produced
correct answers for 25, incorrect answers for 5, and no
answer for 60. Thus, the dominant factor in the perfor-
mance of the SRI system was that most queries failed
to get through all stages of processing. Table 1 displays
the number and percentage of the queries that failed to
get past various levels of processing.

These numbers should be regarded at best as only an
approximation of the performance of the different com-
ponents of the system, for two reasons. First, no attempt
has been made to judge the correctness of the output of
individual system phases, only to determine whether the
phase produced an answer at all. Second, the failure rate
of the later phases of processing would probably have
been higher if more queries had gotten past the earlier
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Level Number | Percent
Lexicon 1 il
Parsing 14 1R.5
Interpretation 28 31.1
DB query gen. 17 18.9

Table 1. Analysis of SRI ATIS Results

phases of processing.

With these caveats, the results seem to indicate that
most of the difficulties arose in the semantic interpre-
tation phase and the database query generation phase.
The grammar seemed to provide fairly good coverage
of the syntactic constructions used, and the lexicon per-
formed surprisingly well given that the vocabulary in the
test was completely uncontrolled. Undoubtedly, many of
the parsing and interpretation failures were due to the
absence of some of the necessary lexical entries for par-
ticular words, but almost no words in the test material
were totally absent from the lexicon.

The semantic rules and the database query genera-
tor are, in fact, the parts of the system that are the
most recent in origin and must be regarded as far from
complete, independently of how they performed on this
evaluation. Our main conclusion, then, is simply that
much more work is needed on these parts of the system.

Recommendations
In the course of working with the ATIS database and de-
velopment data, it seemed to the SRI team that there are
a number of changes in the database structure and the
data collection system that would result in more inter-
esting data being collected, and that would make system
development easier for ATIS system builders. The phi-
losophy that Texas Instruments followed in setting up
the data collection system was to present information to
the subject in a way that mirrored as closely as possible
the way the information is presented in the printed Of-
ficial Airline Guide (OAG). We believe that an attempt
should be made to tailor the presentation of informa-
tion to the capabilities of eventual interactive spoken-
language computer systems rather than the printed page.
The current ATIS data collection system presents a lot
of information to the subject in response to most queries,
but does so by using many abbreviated codes and col-
umn headings that are compressed in order to fit as much
information as possible on one line of the screen. This
is appropriate for a printed document, because of the
difficulties of cross-referencing mutiple tables in differ-
ent parts of a printed volume, and because of the need
to keep the physical size of the volume down to man-
ageable proportions. Neither of these reasons applies to
an interactive spoken language computer system where
cross-referencing is easly performed by the system, and
much larger volumes of data are easily handled.

We would recommend that the data collection system

be modified to present less information in response to
most queries, but to present that information in a fuller,
less abbreviated form. It has been widely noted that
about one-third of the ATIS queries collected so far are
about the meaning of codes or abbreviated column head-
ings in the displays, rather than about the domain. If
fewer columns were presented in each display, it would be
possible to avoid the use of many of these abreviations.
Moteover, it might prompt subjects to ask more follow-
u» questions to retrieve the information not displayed,
generating a wider range of queries in the domain of air
travel planning.

Implementing this recommendation will require
changing not only the displays, but also the structure
of the database, so that database tuples that differ only
in information not displayed to the subject can be elimi-
nated. Otherwise, the subject would see what appear to
be duplicate answers in the display.

A number of other changes to the structure of the
database would also seem to be desirable. One signif-
icant problem is the status of connecting flights. We
believe it is important to devote some thought and at-
tention to restructuring the database to put connect-
ing flights on an equal footing with direct flights in the
ATIS database. Currently, these are not even listed in
the flight table, so that requests for all flights that meet
certain constraints result in information only about di-
rect flights. As a result there are almost no queries about
connecting flights in the ATIS data, perhaps because the
subjects are not aware of their existence. A related issue
is that there is no fare information on connecting flights,
because it is not presented in the printed OAG. We be-
lieve that if fare information for connecting flights cannot
be obtained from OAG, then reasonable fares should be
computed for them.

These seem to us to be the most important database
and data collection system issues that need to be ad-
dressed for future ATIS evaluations, but there are many
other smaller issues as well. We therefore suggest that a
task force should be created to address these issues and
decide on changes to be implemented for future ATIS
evaluations.
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Abstract

This paper describes a series of experiments aimed at
producing a bottom-up parser that will produce partial
parses suitable for use in robust interpretation and still
be reasonably efficient. In the course of these experi-
ments, we improved parse times by a factor of 18 over
our first attempt, ending with a system that was twice
as fast as our previous parser, which relied on strong
top-down constraints. The major algorithmic variations
we tried are described along with the corresponding per-
formance results.

Introduction

Elsewhere [1] we describe a change in our approach to
NL processiug to allow for more robust methods of in-
terpretation. One consequence of this change is that it
requires a different type of parsing algorithm from the
one we have been using. In our previous SLS work, we
have used a shift-reduce left-corner parser incorporating
strong top-down constraints derived from the left con-
text, to limit the structures built by the parser [2]. With
this parser, no structure is built unless it can combine
with structures already built to contribute to an analysis
of the input as a single complete utterance. If we want
to find grammatical fragments of the input that may be
of use in robust interpretation, however, such strong use
of top-down constraints is not appropriate.

To address this issue, we have built and measured the
performance of a number of bottom-up parsers. These
parsers use the same unification grammar as our shift-
reduce parser, but they do not impose the strong top-
down constraints of the original. These experimental
parsers fall into two groups: purely bottom-up parsers
and bottom-up parsers that use limited top-down con-
straints. The experiments were performed using a fixed
grammar and lexicon for the Air Travel Information Sys-
tem (ATIS) domain, and an arbitrarily selected test cor-
pus of 120 ATISO training sentences. The test grammar
could produce complete parses for 79 of these 120 sen-
tences.

Pure Botton:-Up Parsing

The first parser we implemented was a straightforward
“naive” implementation of the CKY algorithm {3, 4]
adapted to umification grammar. In this algorithm, a
“chart” is maintained that contains records, or “edges,”
for each type of linguistic category that has been found
between given start and end positions in a sentence. In
context-free parsing, these categories are simply the non-
terminal symbols of the grammar. In a unification gram-
mar, they are complex structures that assign values to
particular features of a more general category type.

Qur naive algorithm simply seeds the chart with edges
for each possible category for all the words in the sen-
tence, and then works left to right constructing addi-
tional edges bottom-up. Each time an edge is added to
the chart, the grammar is searched for rules whose last
category on the right-hand side matches the edge just
added to the chart, and the chart is scanned back to the
left for a contiguous sequence of edges that match the
remaining categories on the right-hand side of the rule.
If these are found, then an edge for the category on the
left-hand side of the rule is added to the chart, span-
ning the segment of the input covered by the sequence
of edges that matched the right-hand side of the rule.

When measured with our test grammar and test cor-
pus, our implementation of this algorithm is almost nine
times slower than our original shift-reduce parser. We
conjectured that one significant problem was the uncon-
strained hypothesization of empty categories or “gaps.”
Our grammar, like many others, allows certain linguis-
tic phrase types to be realized as the empty string in
order to simplify the overall structure of the grammar.
For example, “What cities does American fly to from
Boston?” is analyzed as having an empty noun phrase
between “to” and “from,” so that most of the analysis
can be carried out using the same rules that are used to
analyze such sentences as “Does American fly to Dallas
from Boston?” Because empty categories are not di-
rectly indicated in the word string, our naive bottom-up
parser must hypothesize every possible empty category
at every point in the input.

To address this point, we applied a well-known trans-

formation to the grammar to eliminate empty categories
by adding additional rules. For each type of empty cat-
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egory, we found every case where it would unify with 2
category on the right-hand side of a rule, performed the
unification, and deleted the unified empty category from
the rule. For example, if B can be an empty category
then from A — BC we would derive the rule A — C,
taking into account the results of unification. When all
such derived rules are added to the grammar, all the
empty categories can be eliminated.

Performing this transformation both reduced the num-
ber of edges being generated and speeded up parsing,
but only by about 20 percent in each case. We observed
that the elimination of empty categories had resulted in a
grammar with many more unit production rules than the
original grammar; that is, rules of the form A — B. This
occurred because of the large number of cases like the
one sketched above, where an empty category matches
one of the categories on the right-hand side of a binary
branching rule. We determined that the application of
these unit production rules accounted for more than 60
percent of the edges constructed by the parser.

Our next thought, therefore, was to try to transform
the grammar to eliminate unit productions as well, but
this process turned out to be, in practical terms, in-
tractable. Eliminating empty categories had increased
the grammar size but only by about half. When we
tried to eliminate unit productions, processing the first
four (out of several hundred) grammar rules took a coun-
ple of hours of computation time ard generated more
than 1800 derived rules. We abandoned this approach,
and instead we eliminated the unit productions from the
grammar by compiling them into a “link table.” The
link table is basically the transitive closure of the unit
productions, so it is, in effect, a specification of the unit
derivations permitted by the grammar, omitting the in-
termediate nodes. This table is then used by the parser
to find a path via unit productions between the edges in
the chart and the categories that appear in the nonunit
grammar rules. This is effectively the same as the CKY
algorithm except that edges that would be procuced by
unit derivations are never explicitly created.

We also made some modifications to speed up selec-
tion of applicable grammar rules. We added a “skeletal”
chart that keeps track of the sequences of general cat-
egories (ignoring features) that occur in the chart (or
could be generated using the link table), with the re-
striction that the only sequences recorded are those that
are initial segments of the sequence of general categories
(ignoring features) on the right-hand side of some gram-
mar rule. Each grammar rule is itself indexed by the
sequence of general categories occuring on its right-hand
side. For example, if there is some sort of verb spanning
position z through position y in the input and some some
sort of noun phrase spanning position y through position
z, the skeletal chart would record that there is a sequence
of type v.np ending at point z. Thus, when the parser
searches for applicable rules to apply to generate new
edges in the chart at a particular position, it only con-
siders rules which are indexed by an entry in the skeletal
chart for that position.

Eliminating unit productions by use of the link ta-
ble and accessing the grammar rules through the skele-
tal chart made the parser substantially faster, but this
parser is still almost three times slower than the shift re-
duce parser on our test corpus using our test grammar.
At this point, we seemed to have reached a practical
limit to how fast we could make the parser while still
constructing essentially every possible edge bottom-up.
This parser is in fact almost twice as fast as the shift-
reduce parser in terms of time per edge constructed, but
it constructs more than four times as many edges.

Making Limited Use of Context

QOur limited success in constructing a purely bottom-
up parser that would be efficient enough for practical
use with our unification grammar led us to reconsider
whether it is really necessary to compute every phrase
that can be identified bottom-up in order to use the out-
put of the parser in a robust interpretation scheme. We
again focused our attention on syntactic gaps. Although
we had dealt effectively with explicitly empty categories
and with categories generated by the unit productions
created by the elimination of empty categories, we knew
that many of the additional edges the bottom-up parser
was creating were for larger phrases that implicitly con-
tain gaps (e.g., a transitive verb phrase with a missing
object noun phrase), even when there is nothing in the
preceding context to license such a phrase. We reasoned
that there is little benefit to identifying such phrases,
the vast majority of which would be spurious anyway,
because unless we can determine the semantic filler of a
gap, the phrase containing it is unlikely to be of any use
in robust interpretation.

With this rationale, we have implemented several vari-
ants of a bottom-up parsing algorithm that allows us to
use limited top-down constraints derived from the left-
context to block the formation of just the phrases that
implicitly contain gaps not licensed by the preceding con-
text. For example, in the sentence we previously dis-
cussed, “What cities does American fly to from Boston?”
the interrogative noun phrase “what cities” signals the
possible presence of a noun phrase gap later in the sen-
tence. This licenses

fly to

fly to from Boston

American fly to from Boston

does American fly to from Boston

all as being legitimate phrases that contain a noun
phrase gap. Without that preceding context, we would
not want to consider any of these word strings as legiti-
mate phrases.

To implement this approach we partitioned the set
of grammatical categories into context-independent and
context-dependent subsets, with the context-dependent
categories being those that implicitly contain gaps.
Defining which categories those are is relatively easy in
our grammar, because we have a uniform treatment of

A-102




“wh” gaps, usually called “gap-threading” [5], so that
every category that implicitly ~v explicitly contains a
gap has a feature gapsin whose value is something other
than null. We have a similar treatment of the fronting of
auxiliary verbs in yes/no questions, controlled by the fea-
ture vstore. Finally, an additional quirk of cur grammar
required us to treat all relative clauses as context depen-
dent categories. So we defined the context-independent
categories to be those that

o Have null as the value of gapsin or lack the feature
gapsin, and

e Have null as the value of vstore or lack the feature
vstore, and

¢ Are not relative clauses.

All other categories are context dependent.

This is, of course, simply one of any number of
ways that categories could be divided between context-
independent and context-dependent. Qur ability to
change these declarations gives us an interesting pa-
rameterization of our parser, such that it can be run
as anything from a purely bottom-up parser, if all cat-
egories are declared context-independent, to one that
uses maximum prediction based on left context like our
shift-reduce parser, if all categories are declared context-
dependent. It would also be possible to derive a candi-
date set of context-dependent categories automatically
or semi-automatically from a corpus. The candidates for
context-dependent categories would be those categories
that most often fail to contribute to a complete parse
when found bottom-up.!

The basic parsing algorithm remains the same as in
the purely bottom-up parsers, with a few modifications.
After each rule application the resulting category is
checked to see whether it unifies with one of the context-~
independent categories. If so, the edge for it is added to
the chart with no further checking. If not, a test is made
to see whether the category is predicted by the preceding
left context. If so, it is added to the chart; otherwise, it
is rejected. '

The main complexities of the algorithm are in the gen-
eration and testing of predictions. Whenever an edge is
added to the chart, predictions are generated that are
similar to “dotted rules” or “incomplete edges,” except
that predictions include only the remaining categories to
be matched, since predictions are not used in a reduc-
tion step as they are in other algorithms. So, if we have
a rule of the form A — BC and we add an edge for B to
the chart, then we may add a prediction for C following
B. Whether the prediction is made or not depends on a
number of things, including whether the left-hand side of
the rule is context-dependent or independent. In the cur-
rent example, if A is a context-independent category, we
proceed with the prediction; otherwise, we must check
whether A itself is predicted. In addition, predictions

}This idea arose in response to a question posed by Mitch
Marcus.

can arise from matching part of a previous prediction.
If we have predicted AB and we find A, then we can
predict B.

In order to minimize the number of predictions made,
we make two important checks. First we check that the
prediction actually predicts some context-dependent cat-
egory. Second, we do a “follow” check, to make sure that
the predicted category might occur, given the next word
in the input stream. There are a few other minor re-
finements to limit the number of predictions, but these
are the most important ones. In order to check whether
a context-dependent category is predicted by a certain
prediction, we consult a “left-corner reachability table”
that tells us whether the category we are testing is a
possible left corner of the predicted category.

When we tested this algorithm, we found that it dra-
matically reduced the number of edges generated, and
equally dramatically improved parse time. We noted
above that our best purely bottom-up parser was about
three times slower that the shift-reduce parser. This
algorithm proved to be 20 percent faster than the shift-
reduce parser on our test corpus and test grammar.

Examination of the number and type of edges pro-
duced by this weakly-predictive parser led us to ques-
tion whether all the refinements that we had made to
the purely bottom-up parsers, in order to deal with the
enormous number of edges they produced, were still nec-
essary. We have performed a number of experiments
removing some of those refinements, with interesting re-
sults. The main effect we observed was that using the
link table to avoid creating edges for categories produced
by unit derivations is no longer productive. By using the
link table to create explicit edges for those categories, so
that we do not have to use the link table at the time
we match the right-hand sides of rules against the chart,
we got a parser that was twice as fast as the shift re-
duce parser. We also found that leaving empty cate-
gories in the grammar actually speeded-up this version
of the parser very slightly (about 4 percent). More edges
and predictions were generated for the empty categories,
but this was apparently more than compensated for by
the reduction in the number of grammar rules.

Conclusions

This paper is, in effect, a narrative of an exercise in al-
gorithm design and software engineering. Unlike most
algorithms papers, it contains a great deal of detail on
what did not work, or at least what did not work as
well as had been hoped. It is also notable because it
talks about practical, rather than theoretical efficiency.
Most papers on parsing algorithms focus on theoretical
worst-case time bounds. Although we have not analyzed
it, it seems likely that all the algorithms we tried have
the same polynomial time bound, but the difference in
the constants of proportionality involved makes all the
difference between the algorithms being usable and not
usable. Also, unlike most experimental results on pars-
ing, ours are based on a real grammar, being developed
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for a real application, not a toy grammar written only for
the purposes of testing parsing algorithms. It is unlikely
that the problems with gaps that are absolutely crucial
in this exercise would arise in such a toy grammar.

In terms of concrete results, the relative performance
of several of the parcers is summarized in the table below.

Parser Time | # Edges | Time/Edge
shift-reduce 1.00 1.00 1.00
naive bottom-up | 8.81 12.52 0.70
best bottom-up 2.95 4.62 0.63
best predictive 0.48 1.79 0.27

Notice that all the new parsers are significantly faster
than the shift-reduce parser in terms time per edge gen-
erated. This is undoubtedly due to the high overhead of
the prediction mechanism used in the shift-reduce parser.
It is also interesting to note that among the new parsers,
the faster the overall speed of the parser, the faster the
time per edge, also. This may be somewhat surprising,
because of all the additional mechanisms added to the
last two parsers to reduce the number of edges, compared
to the naive bottom-up parser. Evidently the benefits of
having a smaller chart to search outweighed the costs of
the additional mechanism, even on the basis of time per
edge.

In summary, our first attempt to produce a bottom-up
parser was nine times slower than our baseline system:;
our last attempt was twice as fast. Thus we achieved
a speed up of a factor of 18 over the course of these
experiments. We finished not only with a parser that
produced the additional possible phrases that we wanted
for robust interpretation, but did so wmuch faster than the
parser we started with. Furthermore, we have developed
what seems to be an important new parsing method for
grammars that allow gaps, and perhaps more generally
for grammars with a set of categories that can be divided
into those constrainted mainly internally and those with
important external constraints.
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OVERVIEW

This paper describes improvements o DECIPHER, the speech recog-
npition component in SRI's Air Travel Information Systems (AT1S) and
Resource Mapagement systems. DECIPHER is 2 speaker-independent coo-
tinuous speech recogaition sysiem based on hidden Markov model (HMM)
technology. We show significan! performance improvements in DECIPHER
due 1o (1) the addition of tied-mixture HMM modeling (2) rejection of out-
of-vocabulary speech and background noise while sontinuing o recognize
speech (3) adapting to the current speaker (4) the implementation of N-gram
satisical gammars with DECZFHER. Finally we describe our performance
in the February 1991 DARPA Resource Management evaluation (4.8 per-
cent word error) and in the February 1991 DARPA-ATIS speech and SLS
evaluations (95 sentences correct, 15 wrong of 140). We show that, for the
ATIS evaluation, s well-conceived sysiem imtegralion can be refatively
robust 1o speech recognilion errors and Lo linguistic variability and ervors.

Introduction

The DARPA ATIS Spoken Language System (SLS) task
represents significant mew challenges for speech and patural
language technologies. For speech recognition, the SLS task is
more difficult than our previous task, DARPA Resource
Management, along several dimensions: il is recorded i a poisier
environment, the vocabulary is not fixcd, and, most important, it is
spontaneous speech, which differs significantly from read speech.
Spontapeous speech is a sigoificant challenge to speech
recognition, since it contains false starts, apd von-words, and
because it tends 1o be more casual thap read speech. It is also a
major challenge to patural language techmologies because the
structure of spontaneous language differs dramatically from the
structure of written language, and almost all natural language
research has beed focused on writien language.

SLS Architecture

SRI has developed a spoken language sysiem (SLS) for
DARPA's ATIS benchmark task [1]. This system can be broken up
into two distinct components, the speech recognition snd natural
language componeois. DECIPHER, the speech recognition
component, sccepts the speech waveform as input and produces &
word list. The word list is processed by the patural language (NL)
compooent, which generates a data base query (or no response).
This simple serial integration of speech and natural language
processing works well because the speech recognition system uses
& statistical language model 1o improve recognition performance,
and because the natural language processing uses s templale
matching spprosch that makes it somewhst insensitive (o
recognition errors. SRI's SLS achieves relatively high performance
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because the SLS-level system integration acknowledges the
imperfect performance of the speech and pestural language
technologies. Our patural language component is described in
snother paper it this volume {2]. This paper focuses oo the speech
recognition system and the evaluation of the speech recoguition and
overall ATIS SLS zystems.

Resource Management Architecture

SRI has also evaluated DECIPHER using DARPA’s Resource
Management task {3,4]. The system ay hitecture for this task is
simply the speech recognition system with no NL postprocessing.
There are two language models used in the evalustion: a perplexity
60 word-pair grammuar, and a perpiexity 1000 ali-word grammar.
The output is simply ap attempted transcription of the input speech.

DECIPHER

This section reviews the structure of the DECIPHER system
[52. The following sections describe changes w DECIPHER.

Front End Analysis

DECIPHER wuses an FFI-based Melcepstra fromt end.
Twenty-five FFT-Me! filters spanning 100 to 6400 Hz are used to
derive 12 Melcepstra coefficients every 10-ms frame. Four features
are derived every frame from this cepstra sequence. They are

Energy-normalized Mel-cepstra
Smoothed 40-ms time derivatives of the Mel-cepstra

Energy
Smoothed 40-rus energy differences.

We use 256-word speaker-independent ~odebooks to vector-
quantize the Mel-cepstra and the Mel-cepstral differences. The
resulting four-feature-per-frame vector is used as input to the
DECIPHER HMM-based tpench recognition system.

Prouunciation Models

DECIPHER uses pronuncistion models generated by spplying
a phonological rule set to word baseformas. The techaiques used 0
generate the rules are described in [6] md [5]. These generate
approximately 40 pronuncistions per word as measured on the
DARPA Resource Management vocabulary and 72 per word op the
ATIS vocabulary. Speaker-independent probunciation probabilities
sre then estimated using these bushy word petworks and the




forward-backward algorithm in DECIPHER. The networks are then
pruned so tha! only the likely propunciations remain—typically
about 4 per word for the resource management task and 2.6 per
word on the ATIS task. This modeling of pronunciation is onc of
the ways that DECIPHER is distinguished from other HMM-based

systems. We have shown ip {6] that this modeling reduces error
nie.

Acoustic Modeling

DECIPHER builds and trains word modcls by using context-
dependent phone models arranged according to the propuncistion
oetworks for the word being modeled. Models used include upique-
phone-in-word, phone-in-word, triphone, biphone, and generalized
biphones snd triphones, as well as context-independent models.
Similar contexts sre sutomatically smoothed together, if they do not
adequately model the training dsta, according to a deleted-
estimation interpolation algorithrn similar o [7]. The acoustic
models reflect both inter-word and across-word coarticulatory
effects. Training proceeds as follows:

*  Initially, contexi-independent boot models xre estimated from
hand-labels in the TIMIT training database.

*  The boot models are used as input for a two-iteration context-
independent mode! training run, where context-independent
models are refined and pronunciation probabilities are calcu-
lated using the full word networks. These large networks are
theo pruned by eliminating low probability pronuncistions.

e Context-dependent models are then estimated from a second
two-iteration forward-backward run, which uses the context-
independent models and the pruned petworks from the previ-
Ous ilerations as input.

ACOUSTIC MODELING
IMPROVEMENTS

Tied Mixtures

We have implemented tied-mixture HMMs (TM-HMMs) in
the DECIPHER system. Tied mixtures were first described by
Huang[9] and more recently in by Bellegarda and Nahamoo[8).
TM-HMMs use Gaussian mixtures as HMM output probabilities.
The mixture weights are unique 10 each phonetic model used, but
the set of Gaussians is shared among the siates. The tied Gaussians
could be viewed as forming a Gaussian-based VQ codebook that is
reestimated by the HMM forward -backward algorithm.

Our implementation of TM-HMMs has thc following
characteristics:

¢ We used 12-dimensional diagonal-covariance Gaussians. The
variances were estimated and then smoothed with grand vari-
amces.

* Computation can be significantly reduced in TM-HMMs by
pruning either the mixture weights or the Gaussians them-
selves. We found that shortfall threshold Gaussian pruning—
discarding all Gaussians whose probability density of input at
a frame is less than a coustant times the best probability den-
sity for that frame—aworks as well for us as standard top-N
pruning (keeping the N best Gaussians) and requires less com-
putation.

+  We use two scparale sets of Gaussian mixtures for ouwr TM-
HMMs; one for Mel cepstra and one for Mel-cepsoal denvalives
We retained our discreie disthbution models for our epergy fes-
tures.

«  Corrective training [5,10,11] was used 0 opdaie the mixture
weights for the TM-HMMs. The algorithm is idenucal w that
used for discrele HMMs. That is, the mixture weights are
updated as if they were discrete cutput probabilives. No mixture
IDCADS OF VATiEnces were corrected.

We evalusied TM-HMMs on the RM task using the perplexity 60
word-pair grammar. Our tra.ning corpus was the standard 3990
sentence training sel. We used the combined DARPA 1988, February
1989, and October 1989 test sets for our development set This
contains 900 seolences from 32 speakers. We achieved a 6.8 percent
word erTor rate using our discrete HMM system on this test set The
TM-HMM spproach achieved ap error rate of 5.5 percent Thus, the
TM-HMMs improved word recognition emor raie by 20 percent
compared to discrete HMMs.

Word Error
System Type {percent)
Discrete DECTPHER 68
Discrete+sex sepanalios 63
T™M-HMM for recogrition anly 6.4
- + eX 3
T™M-HMM + corrective training 47
T™M-HMM +sex +c0frective 45
TABLE 1. Enor rate impmvements with TM-HMMs with our

900-sentence RM development set

Male-Female Separation

In the June 1990 DARPA Speech and Natural Language meeting
{5}, we reported & 20 percent reduction in RM word-error mte by
taining separale male and female recognizers, decoding using
recognizers from both sexes, and then choosing the sex according to
the recognizer with the highest probability hypothesis. This
improvement was achieved using a recognizer tramed on 11,190
sentences. We did not achieve 8 tignificant improvement using male-
fernale separation on the smaller 3990 sentence training sel. We set
out to see, as has been claimed in {8], whether TM-HMMs can take
advantage of male-female separation with smaller (3990 sentence)
training sets. Our results were mixed. Although performance did
improve from 5.5 percent word error with combined models, to 4.9
percent word error with separale male-female models (a 10 percent
improvement) we note that 273 of the overall improvement was due to
the dramatic improvement for speaker HXS. Aside from this onc
speaker, the performance gain was not significant. Based on our last
study, however, we are confiden! thst male-female separation does
improve performance with sufficient training data. The tabie below
shows performance for tied-mixture HMM; using combined and sex-
scparated models.
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Standard Models
Name Errs Wds %Err

Male-Female Models
Errs Wds %Err

ESG 2 241 0483 4 11 1.66
TAB 4 178 2.25 3 178 1.69
CEW 11 241 4.56 S A1 207
AIC 10 253 395 6 253 237
HXS 36 22 1622 6 222 270
DMS 6 179 3.3s S 179 279
GMB 3 246 122 7 246 2.85
HIM 1 296 372 4 296 3.04
BEF 5 226 221 7 26 310
Tis 9 265 340 9 265 3.40
DAS 14 203 690 7 203 345
DR 12 246 488 9 246 3.66
EWM 12 m 441 10 m 368
KLS ] 244 328 9 244 369

DD 10 233 429 10 33 429
AEO 9 229 393 10 9 437
DML 18 m 6.62 12 22 441
PGH 13 204 6.37 9 204 4.4]
ERS 11 212 5.19 10 212 472
GAW 15 244 615 12 244

AEM 8 302 265 17 302 563
DTB 7 277 3.08 13 27 573
crw 17 253 6.72 15 253 593
CMH 18 230 7.83 15 230 652

JABLE 2. Performance with and without sex-geparation

There was no significant additional gain from using corrective
tining in addition to male-female separation. Performance
improved from 4.9 percent etror (male-female only) or 4.7 percent
error (corrective training only) to 4.5 percent error (both methods).
This lack of further improvement is due to the reduction in training
data.

Speaker Adaptation

We have begun experiments into speaker-adaptation,
converting speaker-independent models into speaker-dependent
ones. Our experiment involved using VQ codebook adaptation via
tied-mixture HMMs as proposed by Rtischev [13). That is, we
adjusted VQ codeword locations based oo forward-backward
alignments of adaptation sentences. However, since we mre using a
tied-mixture recognition sysicm, we adapted the Gaussian means
instead of the codebook.

We selected 21 of the speakers in our development test set for
use in an adaptatior experiment. We had either 25 or 30 Resource
Management sentences recorded for each of these speakers. We
chose to use their first 20 sentences for adaptation, and the other 5
or 10 sentences for adaptation westing.

Using our original TM-HMM models, we achieved an error
rate of 7.4 percent {114 erors in 1541 reference words) on this
adaptation test set. After adjusting means for each speaker using the
20 adaptation sentences, we schieved an error rate of 6.1 percent
(94 errors in 154] reference words) on the adapiation test
sentences.

This improvement with adaptation leads W performance that is
still quite short of speaker-dependent accuracy (the ullimate goal of
adaptation). Thus, it does not seemn worth the added incooveaience of
obtaining 20 known sentences from a potential system user, though it
{s promising for on-linc adaptation. We plan to look into several areas
for further improvement. For example:

1. Rtischev et al. [14] have shown that adspting mixture weights is &t
Jeast as important as adapting means.

2. Kubalsa [15] et al. have shown that adapting speaker-dependent
models can be superior to adapting from speaker-independent
models.

3. ltis possible that the adaptation sentences peed pot be s.pervised
given the relatively good (7.4 percent error) imitial performance.

Rejection of Out-of-Vocabulary Input

We implemented a version of DECIPHER that rejects false input
as well as recognizing legal input (our standard recognize: altempts 10
classify all the input). In addition o standard word models, it uses so
out-of-vocabulary word mode] to recognize the extraneous input. The
word model has the following pronunciation network similar to {17).

All context
independent
phones

All context All coptext

ind;menl md;msa:t

RGURE 1. Out-of-vocabulary word model

There are 67 phooetic models oo esch of the arcs in the sbove
word petwork. All phooetic transition probabilities in this word
petwork are equal, and are scaled by s parameter that sdjusts the
amount of false rejection vs. false acceptance.

Thus far, we have performed s pilot study that shows this method
10 be promising. We gathered a database of 58 sentences wial from six
people. About half of the sentences are digit strings and the other half
are digits mixed with other things. There are a total of 426 digits in the
database, and 176 additional non-digit words. Example seotences are
outlined in Table 3,

We considered comrect recognition for these sentences 1o be the
digits in the string without the rest of the words (i.e. 2138767287,
3876541104, 33589170429 are the correct answers for the top three
sentences in Table 3).

We trained a digit recognizer with rejection from the Resource
Management training set and schieved s word exvor rate of 5.3 percent
for the 27 sentences that coptained only digits (13 errors « 1 insen 3
delele 9 subs in 243 reference words), which is within one efror of the
sysiem without rejection. Thus, in this pilot study, using rejection
didn’t hun performaace for “clean” input. The overall error rate was
11.7 percent (26 inserts 15 deletes 9 subs in 426 refercnce words).
That is, 402 of 426 digits were deiected, and at Jeast 141 of the 176
extraneous words were rejected.

A-107




my parents number is2 13 um8760k7287
if you have questions please dial extension 387 6at54 110k4
pleasecall335891um70h429
furom let's see what's this 1 2 34 5 uh that's not right 234 5
12 3 ohno that's wrong 24 5 8 9 yeah i think that's it
thisisatest 1234 58 7 this was only g test
<grunt> [ 2 <cough> 3 4 5 <sneexe> 8 7 <mic-noise>
4 ] dollarsand 3 1 8 cents
what'sthisoh4 ] 08
welllet'ssee3 1478 ok

TABLE 3. Sampie sentences for the rejection study

LANGUAGE MODELING

Bigram Language Modeling

We used a bigram language model 1o constrain the speech
recognition system for the ATIS evaluation. A back-off estimation
algorithm [16] was used for estimation of the bigram parameters.
The training data for the grammar consisted of 5,050 sentences of
spontaneous speech from various sites—1,606 from MIT’s ATIS
data coliection project, 774 from NIST CD-ROM releases, 538
from SRI's ATIS data collection project, and 2,132 from various
other sites.

Robust estimates for many of the bigram probabilities cannot
be schieved gince the vast majority of them are seen very
infrequently (becsuse of the lack of sufficient training data).
Furthermore, frequencies of words such as months and cities were
biased by the data collection scenarios and the time of year the data
was collected. To reduce these effects, words with effectively
similar usage were assigned to groups, and instead of collecting
counts for the individual words, counts were collected for the
groups. After estimation of the bigram probabilities, the
probabilities of transitioning to individual words were assigned the
group probability divided by the number of words in the group.
This scheme pot only reduced some of the problems due to the
sparse training data, but also aliowed some unseen words (other
city pames, restriction codes, etc.) w0 be casily added to the
grammar. The table below contains the groups of words tied
together.

months, days, digits, teens, decades, date-ordinals, cities, airports,
siates, airlines, class-codes, restriction-codes, fare-codes, airline-
codes, aircraft-codes, airport-codes, other-codes

TABLE 4. Tied Groups

Using our back-off bigram on our ATIS development set (most
of the June 1990 DARFPA-ATIS test set), we achieved a 14.1
percent word error rate with a test-set perplexity of 19 (ot counting
6 words pot covered by the grammar). When we spplied this
grammar to the February 1991 ATIS evalustion test set (200
sentences) the perplexity was 43, excluding 26 instances of words
not covered in our vocabulary. For the 148 Class A sentences, the
recognition word error rate was 17.8 percent.

We alwo explored various class-grammar implementations. These
grammars were generated by interpolating word-based bigrams with
class-based bigrams. We were able (o vary the grammars and their
perplexities by varying the interpolation coefficients. However,
recoguition performance pever improved over that for the back-off
bigram. In fact, accuracy remained relatively constant throughout s
large range of perplexitics.

Table § illustrates recognition accuracy using bigrams with
different perplexities on our AT1S development test set. A preliminary
sct of models was used for recognition (with 442 words in the
vocabulary) and the grammars were estimated using 2,909 sentences.

Word Error
Perplexity (percent)

Bscked-off Bignm 19 141
Interpolsted Bigrams 20 14.5
% 15.3

n 14.9

] 14.7

91 145

13 149

442 %2

TABLE 5. Perplexity vs. word error on the ATIS
development set

These tables also illustrate that recognition performance did oot
depend strongly on the test-set perplexity. Clearly, other factors are
dominating performance. We believe that one of our most pressing
needs in this research is 1o understand what this bottleneck is, and 0
develop ways that express it better than perplexity.

Multi-Word Lexical Units

Many words occur with sufficient frequency and with significant
cross-word coarticulation that s better acoustic mode]l might be made
by training these word combinations ss a gingle word model. These
words include “what-are-the,” “give-me,” eic., which can have &
variety of proounciations best modeled with & petwork of phones
representing the phooetic and phomologica] variation of the whole
sequence (“what're-the,” “gimme,” eic.) instead of esch word
separately.

Also, when considering class grammars, multiple word
sequences allow classes which could pot be constructed by
considering every word separately. For instance, having distinct
models of all the restriction codes (¢.g. “v-u-slash-one™) might be
more sppropriate than modeling alpha->alpha->siash- > number in
the bigram. The latter form would allow all the alphabet letters to
transition to all the alphabet letiers, with probabilities as prescribed by
the bigram, and would incorrectly increase the probability for invalid
frestriction codes.

This multi-word technique allows all the probabilities of all the
restriction codes 10 be tied together, so that all are equally covered at
the appropriate place in the gramma, instead of depending completely
on the individual words’ statistics estimaled from sparse training dsta.
The multi-word approach resulted in only a slight performance
improvement compared 10 a sysiem where nop-coarticulatory multi-
words were Jeft separated. That is, for the “separate words” system,
words like “a p slash eighty” were separate words, but coarticulatory
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word modets like “what-are-the” and “list-the” were retained. On a »  Comrective training on mixture weights

119-sentence subset of the June 90 evaluation set, the results were *  Resource Management ali-word snd word-pair grammars used
as shown in Table 6. with 992-word Resource Management vocabulary.
Development Set Performance We achieved the performance shown in Table 9.
Perplexity Word Error Speaker P=60 P=1000
e smonoom
Multi-Word 26 9.6 g
Words CAUO7 26 14.7
Separale 20 107 EACD: 1 ("i % 2
February 1991 Class-A Evaluation Performance rwlmcos 75 19
Perole Word Error ?Esnosm %3 176
i A 104
Multi-Word erp‘snty (Perlc:: R STXO1 4.1 212
- v TBRO1 52 4R
Separate Words 34 183 Average 43 174
TABLE 6. Effectiveness of multi-word modeling TABLE 9. DARPA-RM February 1991 speaker-independent
evaiuation

Note that the higher perplexity of the multi-word system is
deceiving since high probability grammar transitions are now
hidden within the multi-word models, and are pot seen by the
grammar. Tables 7 and 8 list the various multi-word units.

Our performance is severely limited by training dawlS5], sd
many further improvements for the RM task may only be ways to
work mound RM's artificial limit oo training data. Thus, we expect to
. develop and evaluate our system in the future with the ATIS task
Jlights-from, what.is-the, show-me-the, show-me-all, show-me, which both has more training data availsble and uses more realistic
how-many, one-way, whal-are-the, give-me, wha-is, i-would-like, (spontaneous) speech.

i'd-like-to, what-does

. ) SLS Evaluation
TABLE 7. Coarticulatory Multi-Words
We evalusted op DARPA's February 1991 ATIS test set using a

CITIES: san-francisco, washington-d-c, ... system similar to the one described sbove except:

AIRLINES: a-1, c-0, t-w-3, U-s-aif, ...

AIRCRAFT: d-c-en, seven-forty-seven, ... +  The system was trained on 17,042 sentences (3990 RM-S1, 4200

mkggr a4}, b-0-5, s-1-0,d-f-w, .. TIMIT, 7932 read ATIS, 920 spontaneous ATIS).

DES: q-X, I-y-b-m-q, k-y, ¥, ...
RESTRICT CODES:  a-peighty, s-p-slash-eighty,... * 1,139 word vocabulary (the test set vocsbulary was not revealed
COLUMNHEADS:  d-u-r-a, &g-p, F--8-max, ... in advance) using multi-word units.
»  Discrete distribution HMM modeling was used for all features.
TABLE 8. Semantic Mutti-Words o A back-off bigram language model [16] with tied word-groups
was used, with a test set perplexity of 43 (not counting 26 words
out of vocabulary).
* A template-matcher patural language compovent 2] was used ©
EVALUATION gener:u: ATIS database queries based on the speech recoguition
outpu
RM Evaluation We achieved the performance shown in Table 10.

SRI evaluated the DECIPHER gystem on DARPA’s February SPKR Corr Sub Del Ins Err SentErr
1991 speaker-independent test set The characteristics of the a s s1 13 17 0 3
evalusied sysem were: g 920 a'g 10 07 87 46
- Speaker-independent recognition =R S TR v By
» 3990 sentence DARPA-RM training Kk 83 88 18 1.0 176  $83
* 3 sue, lefi-1o-right, context-dependent hidden Markov model b B S SR v 1 S

using deleted-interpolation estimation of parameters g‘ % }’ :z.;g %g z%g 'g ; l;g.g
) ::‘:‘f ':::"u;myﬁ:flm "’dym“'m"“’m and Aversge 868 103 31 43 113 60l
+  Tied-mixture modeling for Mel cepstra and delta-Mel-cepstra All-word 1139)

« 256 diagonal covariance Gaussians for each Average 865 S 31 s s 2
+ Independent discrete density HMM models for energy and
delta energy

TABLE 10. DARPA-ATIS February 1991 speech evaluation

+  Multiple pronuncistion trained phonological modeling, sbout 148 Class A Sentances

4 pronunciations per word oo average
»  Cross-word acoustic and phonological modeling
*  Sex-comsistent modeling
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SPKR Corr Sudb  Del Ins Err SentErr
[od) 919 6.5 16 0.8 89 S45
CP 91.7 6.6 1.7 17 100 552
CL 91.4 6.7 19 19 104 448
CK 85.0 8.7 63 0S5 155 64.0
CE 830 11.8 82 26 196 739
o 94 137 69 14 220 759
CH 78.6 13.1 33 36 250 100.0
ca 61.1 13 56 56 3.6 929
o™ 728 25.2 23 239 $14 1000
Average £3.5 126 s 42 207 65

TABLE 11. DARPA-ATIS February 1991 spesch evaluation
All sentences

As can be seen, speakers CT snd CM contributed significantly
to the overall error rate. Furthermore, many of the errors occurred
despite their relatively small bigram probabilities, indicating that
the grammar is still not completely effective in overriding poor
acoustic matches.

Table 12 describes overall spoken language sysiem
performance.

System Right Wrong NA! WErr? Score’

NL Only 109 9 27 310 6590

SLS 96 11 38 414 58.6

TABLE 12. DARPA-ATIS February 1991 SLS evaluation
148 Class A sentences

Discussion

The most interesting result of this evaluation (see the paper by
Pallett in this proceedings) was that, though SRI along with BBN
achieved the best speech recognition accuracy, and SR1 along with
CMU had the best patiral-language-only performance, the
accurscy of SRI's combined speech and natura] Ianguage systems
was far better than that for the other sites. We attribute this to the
error tolerant nature of our speech/natural-language interface. For
instance, note that performance using spoken language is not much
worse than the performance of the NL component given traascribed
input (i.e. given a perfect speech recognition component) even
though the SLS speech recoguition componeat had & 60 percent
sentence ervor rate (at least one word was wrong in 60 percent of
the sentences).

The sbove results indicate 10 us that steady progress in the
speech recognition and natural language technologies, together
with error-tolerant speechvnatural-language interfaces can lead to
practical spoken language systems in the pear future.

1. NA is no snswer

2. WErr or weighted error is percent no snswer plus two times the
percent wrong.

3. Score = 100 - Werr
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1. ABSTRACT

SRI has ported its DECIPHER™ gpeech recognition system from
DARPA’s ATIS domain to DARPA’s CSR domain (resd and spon-
taneous Wall Street Journal speech). This paper describes what
needed to be done to port DECIPHER™, and reparts experiments
performed with the CSR task.

The syrtem was evaluated on the speaker-independent (ST) portion
of DARPA’s February 1992 “Dry-Run” WSJO test and achisved
17.1% word error without verbalized punctuation (NVP) and
16.6% error with verbalized punctuation (VP). In addition, we
increased the amount of training data and reduced the VP error
rate 1o 12.9%. This SI error rate (with s lerger amount of training
data) equalled the best 600-training-sentencs speaker-dependent
_ error rate reported for the February CSR evaluation. Finally, the
system was evaluated on the VP daia using microphones unknown
10 the system instesd of the training-set’s Sennheiser microphone
and the error rate only increased to 26.0%.

2. DECIPHER"

The SRI has developed the DECIPHER™ system, an
HMM-based speaker-independent, continuous-speech rec-
ognition system. Several of DECIPHER™’s attributes are
discussed in the references (Butzberger et al., [1]; Murveit
et al., [2]). Until recently, DECIPHER™’s application has
been limited to DARPA’s resource management task (Pal-
let, [3]; Price et al., [4]), DARPA’s ATIS task (Price, [S]),
the Texas Instruments continuous-digit recognition task
(Leonard, [6]), and other small vocabulary recognition
tasks. This paper describes the application of DECIPHER™
to the task of recognizing words from a large-vocabulary
corpus composed of primarily read-speech.

3. THE CSR TASK

Doddington [7] gives a detailed description of DARPA’s

CSR task and corpus. Briefly, the CSR corpus’ is composed
of recordings of speakers reading passages from the Wal/
Street Journal newspaper. The corpus is divided in many

ways; it includes speaker-dependent vs. speaker indepen-
dent sections and sentences where the users were asked to
verbalize the punctuation (VP) vs. those where they were
asked not to verbalize the punctuation (NVP). There are

also a small number of recordings of spontaneous speech
that can be used in development and evaluation.

The corpus and associated development and evaluation
materials were designed so that speech recognition systems
may be evaluated in an open-vocabulary mode (none of the
words used in evaluation are known in advance by the
speech recognition system) or in a closed vocabulary mode
(all the words in the test sets are given in advance). There
are suggested 5.000-word and 20,000-word open- and
closed-vocabulary language models that may be used for
development and evaluation. This paper discusses a pre-
liminary evaluation of SRI's DECIPHER™ system using
read speech from the 5000-word closed-vocabulary tasks
with verbalized and nonverbalized punctuation.

4. PORTING DECIPHER™
TO THE CSR TASK

Several types of data are needed to port DECIPHER™ to a
new domain:

* A target vocabulary list
* A target language model
« Task-specific training data (optional)

» Pronunciations for all the words in the target vocab-
ulary (mandatory) and for all the words in the train-
ing data (optional)

* A backend which converts recognition output to
actions in the domain (not applicable to the CSR
task).

*The current CSR corpus, designated WSJO is a pilot
for a large corpus to be collected in the future.
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4.1. CSR Vocabulary Lists and Language
Models

Doug Paul at Lincoln Laboratories provided us with base-
line vocabulanes and language models for use in the Febru-
ary 1992 CSR evaluation. This included vocabularies for
the closed vocabulary 5,000 and 20,000-word tasks as well
as backed-off bigram language models for these tasks.
Since we used backed-off bigrams for our ATIS system, it
was straightferward to use the Lincoin language models as
part of the DECIPHER™-CSR system.

4.2. CSR Pronunciations

SRI maintains a list of words and pronunciations that have
associated probabilities automatically estimated (Cohen et
al., {8]). However, a significant number of words in the
speaker-independent CSR training, development, and
(closed vocabulary) test data were qutside this list. Because
of the tight schedule for the CSR evaluation. SRI looked to
Dragon Systems which generously provided SR1 and other
DARPA contractors with limited use of a pronunciation
table for ail the words in the CSR task. SRI combined its
internal lexicon with portions of the Dragon pronunciation
list to generate a pronunciation table for the DECIPHER™-
CSR system.

. 4.3. CSR Training Data

The National Institute of Standards and Technology pro-
vided to SRI several CDROMS containing training, devel-
opment, and evaluation data for the February 1992 DARPA
CSR evaluation. The data were recorded at SR, MIT, and
TI. The baseline training conditions for the speaker-inde-
pendent CSR task include 7240 sentences from 84 speak-
ers, 3,586 sente.ices from 42 men and 3,654 sentences from
42 women.

5. PRELIMINARY CSR PERFORMANCE

5.1. Development Data

We have partitioned the speaker-independent CSR develop-
ment data into four portions for the purpose of this study.
Each set contains 100 sentences. The respective sets are
male and female speakers using verbalized and nonverbal-
ized punctuation. There are 6 male speakers and 4 female
speakers tn the SI WSJQ development data.

The next section shows word recognition performance on
this development set using 5.000-word. closed-vocabulary
language models with verbalized and nonverbalized bigram
grammars. The perplexity of the verbalized punctuation
sentences in the development set is 50.

5.2. Results for a Simplified System

Our strategy was to implement a system as quickly as possi-
bie. Thus we 1uuaily implemented a system using four vec-
tor-quantized speech features with no cross-word acoustic
modeling. Performance of the system on our development
set 15 described in the tables below.

Table 1: Simple Recognizer

Verbalized |yl

Speaker 2’::;:;2:‘ Punctuation

Z%eword err
050 10.0 11.8
053 14.0 17.6
420 14.7 18.1
421 11.9 17.9
051 21.1 18.8
052 20.7 20.2
22g 5.4 19.6
22h 20.8 13.0
422 579 40.4
423 15.0 24.6
Average 20.1 20.2

The female speakers are those above the bold line in Table
1. Recognition speed on a Sun Sparcstation-2 was approxi-
mately 40 times slower than real time (over 4 minutes/sen-
tence) using a beam search and no fast match (our standard
smaller-vocabulary algonthm), although it was dominated
by paging ume.

A brief analysis of Speaker 422 shows that he speaks much
faster than the other speakers which may contribute to the
high error rate for his speech.

5.3. Full DECIPHER™-CSR Performance

We then tested a larger DECIPHER™ system on our VP
development set. That is. the previous system was extended
to model some cross-word acoustics, increased from four to
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six spectral features (second derivatives of cepstra and
energy were added) and a tied-mixture hidden Markov
model (HMM) replaced the vector-quantized HMM above.
This resulted in a modest improvement as shown in the
Table 2.

Table 2: Full Recognizer

Verbalized
Speaker Punctuation
L Jeword err =J
(010) 11.1
053 117
420 13.7
421 11.0
051 20.0
052 142
22g 157
22h 149
422 483
423 13.0
e
Average 174 l

6. DRY-RUN EVALUATION

Subsequent to the system development, above, we evaly-
ated the “full recognizer” system on the February 199] Dry-
Run evaluation materials for speaker-independent systems.
We achieved word error rates of 17.1% without VP and

16.6% error rates with VP as measured by NIST."

Table 3: Dry-Run Evaluation Results

Non |

o | it | Nt

Joword err %word err
427 94 9.0
425 20.1 15.1
z00 144 16.7
063 245 17.8
426 10.2 10.8
060 17.0 229
061 12.3 13.6
22k 253 17.6
221 17.8 124
424 200 18.4

== = S S

Average 17.1 15.4

7. OTHER MICROPHONE RESULTS

The WSJO corpus was collected using two microphones
simultaneously recording the talker. One was a Sennheiser
HMD-410 and the other was chosen randomly for each
speaker from among a large group of microphones. Such

*The NIST error rates differ slightly (insignificantly)
from our own measures (17.1% and 16.6%), however. to
be consistent with the other error rates reported in this
paper, we are using our intemally measured error rates
in the ubles.
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dual recordings are available for the training, development,
and evaluation matenals.

We chose to evaluate our full system on the “other-micro-
phone” data without using other-microphone training data.
The error rate increased only 62.3% when evaluating with
other-microphone recordings vs. the Sennheiser recordings.

In these tests, we configured our system exactly as for the
standard microphone evaluation, except that we used SRI's
noise-robust front end (Erell and Weintraub, {9.10]; Mur-
veit, et al, [11]) as the signal processing component.

Table 4 summarizes the “other-microphone” evaluation
results. Speaker 424’s performance, where the error rate
increases 208.2% (from 18.4% to 56.7%) when using a
Shure SM9! microphone is a problem for our system. How-
ever, the microphone is not the sole source of the problem,
since the performance of Speaker 427, with the same
microphone, is only degraded 18.9% (from 9.0 to 10.7%).
We suspect that the problem is due to a loud buzz in the
recordings that is absent from the recordings of other speak-
ers.

8. EXTRA TRAINING DATA

We suspected that the set of training data specified as the
baseline for the February 1992 Dry Run Evaluation was
insufficient to adequately estimate the parameters of the
DECIPHER™ system. The baseline SI training condition
contains approximately 7.240 from 84 speakers (half42
male, 42 female).

We used the SI and SD training and development data to
train the system to see if performance could be improved
with extra data. However, to save time, we used only speech
from male speakers t0 train and test the system. Thus. the
training data for the male system was increased from 3586
sentences {42 maie speakers) to 9109 sentences (53 male

speakers).” The extra training data reduced the error rate by
approximately 20% as shown in Table 5.

*The number of speakers did not increase substantially
since the bulk of the extra waining data was taken from
the speaker-dependent portion of the corpus.

Table 4: Verbalized Punctuation Evaluation Results Using “Other Microphones”

Speaker Microphone ??o‘:l?;fxiri::?'r S?nvx:t?;i::rrzric %degradation
427 Shure SM91 desktop 10.7 9.0 18.9
425 Radio Shack Highball 214 15.1 41.8
z00 Crown PCC160 desktop 249 16.7 49.1
063 Crown PCC160 desktop 29.4 17.8 65.2
a6 | A ggﬁg‘;i“:es 12.1 1038 120
060 Crown PZM desktop 30.5 22.9 332
061 Sony ECM-50PS lavaliere 18.8 13.6 38.2
22k Sony ECM-55 lavaliere 253 17.6 43.8
221 Crown PCC160 desktop 228 12.4 83.9
424 Shure SM91 desktop 56.7 18.4 208.2

Average 25.0 "—"=———-——_15'4 ) 62.3
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Table 5: Evaluation Male Speakers
with Extra Training Data

Speer | Daine | LS
060 22.6 15.5
061 13.6 8.2
22k 17.6 16.8
221 12.4 113
424 18.4 15.7
426 10.8 98

Average 15.8 12.9

Interestingly, this reduced error rate equalled that for
speaker-dependent systems trained with 600 sentences per
speaker and tested with the same language model used here.
However, speaker-dependent systems trained on 2000+
sentences per speaker did perform significantly better than
this system.

9. SUMMARY

This is a preliminary report demonstrating that the DECI-
PHER™ speech recognition system was ported from a
1.000-word task (ATIS) to a large vocabulary (5.000-word)
task (DARPA’s CSR task). We have achieved word ertor
rates between of 16.6% and 17.1% as measured by NIST on
DARPA’s February 1992 Dry-Run WSJQ evaluation where
no test words were outside the prescribed vocabulary. We
evaluated using alternate microphone data and found that
the error rate increased only by 62%. Finally, by increasing
the amount of training data, we were able to achieve an
error rate that matched the error rates reported for this task
from 600 sentence/speaker speaker-dependent systems.
This could not have been done without substantiai suppon
from the rest of the DARPA community in the form of
speech data, pronunciation tables, and language models.
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1. ABSTRACT

Speech recognition systems tend to be sensitive to unimportant
steady-state variation in speech spectra (i.e. those caused by vary-
ing the microphone or channel characteristics). There have been
many attempts to solve this problem: however, these techniques
are often computationally burdensome, especially for real-time
implementation. Recently, Hermansy et al. [1] and Hirsch et al. [2)]
have suggested a simple technique that removes slow-moving lin-
ear channe! varistion with little adverse effect on speech recogni-
tion performance. In this paper we examine this technique, known
as RASTA fltering, and evaluate its performance when applied to
SRI's DECIPHER™ speech recognition system [3). We show that
RASTA filtering succeeds in reducing DECIPHER™"s depen-
dence on the channel.

2. INTRODUCTION

A number of techniques have been developed to compen-
sate for the effects that varying microphone and channels
have on the acoustic signal. Erell and Weintraub {4, 5] have
used additive corrections in the filter-bank log energy or
cepstral domains based on equalizing the long-term average
of the observed filter-bank log energy or cepstral vector to
that of the training data. The techniques developed by Rose
and Paul (6] and Acero [7] used an iterative technique for
estimating the cepstral bias vector that will maximize the
likelihood of the input utterance. Nadas et al. [8] used an
adaptive linear transformation applied to the input repre-
sentation. where the adaptation uses the VQ distortion vec-
tor with respect to a predefined codebook. VanCompemolle
{10] scaled the filter-bank log energies to a specified range
using running histograms, and Rohlicek [9] experimented
with a number of histogram-based compensation metrics
based on equalizing different aspects of the probability dis-
tribution.

One important limitation of the above approaches is that
they rely on a speech/nonspeech detector. Each of the
above approaches computes spectral properties of the input
speech sentence and subsequently compensates for the sta-
tistical differences with certain properties of the training

data. If the input acoustical signal is not segmentcd by sen-
tence {e.g. open microphone with no push-to-talk bution)
and there are long periods of silence, the above approaches
would not be able to operate without some type of reliable
automatic speech-input/sentence-detection mechanism. An
automatic sentence-detection mechanism would have con-
siderable difficulty in reliably computing the average
speech spectrum if there were many other nonspeech
sounds in the environment.

A second class of techniques developed around auditory
models (Lyon [11]; Cohen [12]; Seneff [13]; Ghitza {14]).
These techniques use various automatic gain controi and
other auditory-type modeling techniques to output a spec-
tral vector that has been adapted based on the acoustic his-
tory. A potential limitation of this approach is that many of
these techniques are very computationally intensive.

3. THE RASTA FILTER

RASTA filtering is a high-pass filter applied to a log-spec-
tral representation of speech. It removes slow-moving vari-
ations from the log spectrum. The filtering is done on the
log-spectral representation so that multiplicative distortions
(such as a linear filter) become additive and may be
removed with the RASTA filter. A simple RASTA filter
may be implemented as follows:

y() =x()) =x(t=1) +(C-y(t-1))

where x(t), as implemented in DECIPHER™, is a log band-
pass energy which is normally used in DECIPHER™ to
compute the Mel-cepstral feature vector. Instead. x(t) is
replaced by y(t), the high-pass version of x(t), when per-
forming the cepstral transform.

The constant, C. in the above equation defines the time
constant of the RASTA filter. It is desirable that C be such
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that short-term variations in the log spectra (presumably
important parts of the speech signal) are passed by the filter,
but slower variations are blocked. We set C = 0.97 so that
signals that vary faster than about 1 Hz are passed and those
that vary less than once per second tend to be blocked. Fig-
ure 1 below plots the characteristic of this filter.

dB
-40.00+9
-60.00-
-80.00 l
0.00 20.00 40.00
Hz

Figure 1: Characteristics of the C = 0.97 RASTA filter

When used in conjunction with SRI’s spectral estimation
algorithms [4, 5], the high-pass filter is applied to the filter-
bank log energies after the spectral estimation operation.
The estimates of clean filter-bank energies are highpass fil-
tered and then transformed to obtain the cepstral vector.
The cepstral vector is then differenced twice to obtain the
delta-cepstral vector and the delta-delta-cepstral vector.

3.1. Removal of an Ideal Linear Filter

We first evaluated RASTA filtering by applying a bandpass
filter (Figure 2 below) to a speech recognition task—contin-
uous digit recognition performance over telephone lines.
The filter was applied to the test set only (no filtering was
applied to the training data). We compared the resulting
performance with the performance of an unfiltered test set
for both standard and RASTA filtering. As Table 1 shows,
the RASTA filtering was successful in removing the effects
of the bandpass fiiter, whereas the standard system suffered
a significant performance degradation due to the bandpass
filter. Compared with our standard signal processing. the
RASTA filtering was able to give a slight improvement on
the female digit error rate, with no significant change in the
male digit error rate. The dramatic decrease in performance
that occurs when the telephone speech is bandpass filtered
is removed by the RASTA filtering, and the results are com-
parable to the original speech signal.

dB 2
PTTT S—a
;N
R
-50.00 / g
I
000 200
Hz x 1000

Figure 2: The distorting bandpass filter charactenistic.

Onginal
Speech

Bandpass
Speech

male | female | male | female

Standard || 3.2 3.1 13.9 11.6
RASTA 34 2.1 3.0 1.9

Table 1: Word error rates for standard signal process-
ing techniques and RASTA filtering techniques using clean
and bandpass-filtered telephone speech.

4. REDUCED MICROPHONE
DEPENDENCE

After the encouraging initial study, we tested RASTA filter-
ing in a more realistic manner—measuring the performance
improvement. due to RASTA filtenng. when dissimilar
microphones are used in the test and training data

To do this. we recorded 50 sentences (352 words) from one
talker simultaneously using two different microphones. a
Sennheiser flat-response close-talking microphone that was
used to train the system. and an Electrovoice 625 handset
with a very different frequency characteristic. The user
spoke queries for DARPA’s ATIS air-travel planning task.
Table 2 shows that for this speaker, the error rate was less
sensitive to the difference in microphone when RASTA fil-
tering was applied than when it wasn’t. Further, there is no
evidence from this and the previous study to indicate that
RASTA filtering degrades performance when the micre-
phone remains constant.
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Sennheiser | Electro Voice
Standard 13 (3.7%) 31 (8.8%)
RASTA 12 (3.4%) 17 (4.8%)
Table2:  Number and percentage of word errors for a

single speaker when test microphone and signal processing
were varned.

5. DESKTOP MICROPHONES

RASTA filtering is most effective when differences
between training and testing conditions can be modeled as
linear filters. However, many distortions do not fit this

model. One example 1s tesi:ng with a desktop microphone
with models rained with a clos.-ialking microphone. In this
scenario, although the microphones charactenistics may be
approximately related with a linear filter, additive noise
picked up by the desktop microphone violates the linear-fil-
ter assumption.

To see how important these effects are, we performed rec-
ognition experiment on systems trained with sennheiser
mucrophones and tested with a Crown desktop microphone.
These test recordings were made at Camegie Mellon Uni-
versity (CMU) and at the Massachusetts institute of Tech-
nology (MIT). They simultanecusly recorded a speaker
using both Sennheiser and Crown microphones interacting
with an ATIS (air travel planning) system.

The performance of DECIPHER™ on the ATIS recordings
ts shown in Tables 3 and 4. Table 3 shows the system per-
formance results on MIT’s recordings, while Table 4 con-
tains the sysiem performance results on CMU’s recordings.

Speaker Sennheiser Crown Crown Crown Crown ]
Standard Standard RASTA NRFE NRFE+RASTA
4v 13.0 13.8 22.8 18.7 16.3
4w 1.7 5.1 L7 43 34
SE 17.8 26.6 278 18.1 14.7
55 18.5 26.6 253 232 17.6
59 13.7 40.2 41.0 26.6 23.6
Average 129 225 237 18.2 15.1
Table 3: Waord error rate for MIT recordings varying microphone and signal processing
Speaker Sennheiser Crown Crown Crown Crown
Standard Standard RASTA NRFE NRFE+RASTA
IF 20.7 91.8 469 46.9 36.7
IH 205 932 757 71.0 358
IK 26.2 87.1 62.3 60.3 35.8
Average 225 90.7 61.6 59.4 36.1
Table 4: Word error rate for CMU recordings varying microphone and sigral processing
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For the MIT re<ordings, note that the best performing sys-
tem on the Crown microphone data was very close with the
performance on the Sennheiser recordings (12.9% vs.
15.1%). The addition of RASTA processing did not help the
standard processing on the Crown data (the error rate went
up slightly 7iom 22.5% to 23.7%) but it did help the noise-
robusi estimat: un processing (18.2% to 15.1%).

The performance on CMU’s Crown recordings were much
lower. CMU’s audio recordings for were noticeably noisier;
the speaker sounded as if he was much farther from the
microphone, and there were other nonstationary sounds in
the background. Note that the error rate with the standard
signal processing is extremely high (90.7% word error). For
the CMU Crown microphone recordings, the addition of
RASTA processing helped reduce the error rate for both the
standard and noise-robust estimation processing conditions.
The NRFE + RASTA processing was able to reduce the
error rate by 60% over the no-processing condition on the
CMU Crown microphone recordings (90.7% to 36.1%).

SRI’s noise-robust spectral estimation algorithms are
designed to estimate the filter-bank log energies of the clean
speech signal when there is additive colored noise. The esti-
matton algorithms were designed to work independently
from any spectral shape introduced by the microphone and
channel! variations. Therefore, some type of additional spec-
tral normalization is required to compensate for these
effects: the combined “NRFE + RASTA” system serves
that purpose. The RASTA system (without estimation) can
help compensate for the linear microphone effects, but it
can help only to a limited degree with the nonlinearities
introduced by other sounds.

6. ROBUSTNESS OF REPRESENTATION
TO MICROPHONE VARIATION

To understand the benefit that we have obtained using the
different processing techniques. we developed a metric for
the robusmess of the representation that is separate from
speech-recognition performance. The DARPA CSR corpus
{Doddington [15]) was used for this evaluation since it is
contains stereo recordings. By using stereo recordings, we
r2n compare the robustness in the representation that occurs
when the microphone is changed. In this CSR corpus, the
first channel of these stereo recordings is always a Sen-
nheiser close-talking microphone. The second recording
channel uses one of 13 different secondary microphones.

Using this stereo database, we can compute the cepstral fea-
ture vector on each microphone channel, and compare the
two representations to determine the level of invariance
provided by the signal-processing/representation. The met-
ric that we used for determining the robustness of the repre-
sentation is called relative-distortion and is computed in the
following equation.

2
(Cz(mcl) - Ci (Mic2))

Relative Distortion (C;) = -

Cc(Ulcl) C»(Mtcl)

The relative distortion for cepstral coefficient C, is com-
puted by comparing the cepstral value of the first micro-
phone with the same cepstral value computed on th
secondary microphone. This average squared difference is
then normalized by the variance of this cepstral feature on
the two microphones. This metric gives an indication of
how much variance there is due to the microphone differ-
ences relative 1o Jhe overall vanance of the feature due to
phonetic variation. This metric is plotted as a function of the
cepstral coefficient for d.fferent signal processing algo-
rithms in figure 3.

Figure 3 shows that the RASTA processing helps reduce the
distortion in the lower order cepstral coefficients. When
combined with SRI’s noise-robust spectral estimation algo-
rithms, the distortion decreases even further for the lower
order cepstral coefficients. Neither of the aigorithms help
reduce the distortion for the higher cepstral coefficients.
This metric indicates that even though the robust signal pro-
cessing has reduced the recognition error rate due to mucro-
phone differences, there is still considera.!: vaniation in the
cepstral representation when the microphone is changed.

7. SUMMARY

We have shown that high-pass filtering of the filter-bank log
energies can be an effective means of reducing the effects of
some microphone and channel variations. We have shown
that such filtenng can be used in conjunction with our previ-
ous estimation techniques to deal with both noise and
microphone effects. The high-pass filtering operation is a
simple technigue that is computationally efficient and has
been incorporated into our real-time demonstrasion system.
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Integrating Natural Language Constraints
into HMM-based Speech Recognition

Hy Murveit and Robert Moore
SRI International, Menlo Park, CA

ABSTRACT

This paper discusses a new approach to implement-
ing spoken language systems. This approach both takes
full advantage of syntactic and semantic constraints pro-
vided by a natural language processing component in the
speech understanding task and provides a tractable search
space. The results show  hat the approach is a promising
one for large vocabulary systems. We have already
achieved, {or high perplexity syntactic grammars, parse
times within a lactor of 20 of real time with resulting
HMM recognition computational requirements within the
capability ol high speed multiprocessor computers or spe-
cial purpose speech recognition hardware.

INTRODUCTION

This paper discusses a new approach to implement-
ing spoken language systems--systems that integrate
speech recognition (SR) and natural ianguage processing
(NLP) capabilities. This approach both takes full advan-
tage of syntactic and semantic constraints provided by
the NLP and provides a tractable search space for the
overall understanding task.

We aim to integrate speech recognition and NLP because:

s  many applications of spoken-language systems re-
quire understanding of speech, instead of simple
recognition,

e  appropriate use of constraints from NLP reduces the
perplexity of the speech recognition task, increasing
word recognition accuracy,

e  sharing of information between SR and NLP can im-
prove speech understanding by using acoustic cues
to disambiguate certain sentences,

OTHER APPROACHES

Several ways to integrate SR and NLP have been
tried. They have the following advantages and disadvan-
tages.

SERIAL CONNECTION BETWEEN SR AND NLP:

) In a serial connection, the SR system sends the most
likely sentence (based on acoustics) to a NLP system
which interprets that sentence.

The advantage of this approach is that the compu-
tational burden placed on both the SR and NLP systems
is relatively light. The SR system operates as if there are

no NL constraints and the NLP system jusl parses one
sentence. The disadvantage is that little interaction
hetween the SR and NLP is possible, i.e. the natural
language processor cannot correct errors that the speech
recognizer makes.

WORD LATTICE INTERFACE:

The SR system produces a graph representing the
recognition scores associated with recognizing all {many)
of the words in the vocabulary starting from all (many)
possible start times and ending at all {many) possibie end
times. The NLP systemn searches this graph for the best
scoring sentence that meets NL constraints{1].

The advantage of this approach over the first ap-
proach is that it allows intersction between SR and NLP
thus improving recognition (and possibly) NLP perfor-
mance. Disadvantages include a considerably higher com-
putational burden on the system. The SR system must
now create a lattice for many word start and end times,
and thus may not be abie to take advantage of fast
dynamic programming based search algorithms appropri-
ate for schemes solving for the best answer only. in the
worst case, computation increases by the length of the in-
put sentence (the number of possible start points for every
word). Realistically, exhaustive lattices are impractical,
and the lattice pruning algorithms that must be used are
suboptimal with word lattice interfaces since they cannot
make use of the NLP information source. The natural
language processor also has much more work as it must
evaluate many possible sentences. This is also true for the
other approaches below.

N-BEST SENTENCES INTERFACE:

This approach is similar to the serial interface, but
the SR system produces the N best sentences instead of
the (N=1) best recognized sentence. As with the serial in-
terface, recognizers typically use some language modeling
(such as Statistical bigrams and trigrams) when determin-

ing the top sentences. The NLP sysiem can also produce
an NL score for each sentence. It would then choose the
sentence with the best combined speech and NLP score. In
the case of parse/noparse scoring by the NLP system, the
NLP system chooses the first sentence Lhat parses[2].

This approach permits interaction between the SR
and NLP components with compntation rate incrensing
linearly with N. Some implementations{2} require that N
be known in advance. Researchers using this claim that it
runs quicker than a stack-decoder based implementa-
tion[3] that generates sentences on demand. In either
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case, if N is small the computation rate is low. However,
if the correct sentence ranks low in the list of best sen-
tences and NLP can correct this recognition error, then a
large N is required and the N-best approach requires more
computation than other approaches. Further, as sentence
length increases. the N required may increase exponential-
ly.

DYNAMIC NETWORK GENERATION

Our approach, dynamic grammar network genera-
tion, represents natural language knowledge in a state
transition network, similar to finite-state language models
used elsewhere for speech recognition systems. A
straight-forward implementation of this approach is not
feasible, however, because typical NL systems would gen-
erate unmanageably large or infinite networks. Therefore,
the network is generated on the fly, and only the portions
of the network within a pruned scarch are expanded.
Thus, the state-transition network generated {or a partic-
ular spoken sentence will be relativelv small, and different
than that generated for a different utterance.

The approach is described graphically in Figure 1.
The system runs as il it were a standard HMM-based
speech recognition system using a state-transition aetwork
based language model. When the system is started up,
the state-transition network contains an initial state, a
list of the words that can leave that state (predictions),
and markers indicating that the states that would be
reached from these initial predictions are blocked--not yet
included in the state transition netwovk. The recognition
system begins by searching for the words in the initial
state’s prediction list using a standard beamn search. When
a state is reached that is not in the network, the SR sys-
tem calls the NLP system which runs the parser, creates
the needed state, and generates predictions for that state.
The SR system can then continue until it hlocks acain
The process of accepting the completion of a word from a
state in the network and generating a new state is called a
shift, as it corresponds to a shilt in a shift-reduce natural
language parser[d].

This continues until the entire signal is exhausted.
Words ending at the end of the signal are checked to see
il they reach a finul state--a state such that the hy-
potheses reaching that state are acceptable as complete
utterances--and the most probable final-state hypothesis is
chosen as the recognized sentence.

This approach allows a tight coupling of SR and
NLP algorithms and has the following advantages:

. It brings all knowledge to bear a soon as possible so
that extra work need not be done (for instance the
recognizer will not pursue hypotheses that can be
ruled out by NLP and vice versa). In contrast to an
equivalent system based on word lattices, a
dynamic-grammar network system would not search
portions of the signal that correspond to word-
lattice entries that are uniikely due to previous
acoustics or natural language.

. It allows for interactions between speech and NLP.

For instance, an acoustic recognition model can be
altered if the NLP system judges that the word
should be emphasized due to its syntactic or semnan-
tic position.

In addition, this approach has the important advan-
tage that, from the perspective of the recognition system,
finite-state language constraints are used. Thus, all of the
experience the speech recognition community has
developed for dealing with finite-state-based speech recog-
nition systems still applies to this system. For instance, a
standard beam-search pruning technique is used in this
system{5}.

SYSTEM IMPLEMENTATION

Speech Recognition Processor

This system's speech recognition component is SRI's
DECIPHER speech recognition system[6]. It is a continu-
ous speech recognition system that recognizes speech ei-
ther in a speaker independent or dependent fashion. It
uses discrete density 3-state hidden Markov models to
represent phones. Four discrete probability densities are
used per state to model the variation in vector-quantized
Mel-cepstra, gquantized derivatives of these Mel-cepstia,
quantized energies. and their derivatives. Word models
are constructed from nctwork representations of the word
pronunciations and from a set of phone models {context-
independent. left-biphone. right-biphone. triphone. and
unique-phone-in-word models). The system uses a heuris-
tic algerithm to determine which context to use, based on
the amount of training data available. However, the more
detailed models are smoothed by averaging in less specific
models with weights based on an SRI version of IBM's
Jeleted-interpolation algorithm{7].

DECIPHER is routinely used with a finite-state
language model {the DARPA word-pair grammar) so con-
verting DECIPHER to be used in this spoken language
system was relatively straight-forward.

Natural Language Processor

As we mentioned above, in the dynamic grammar
network approach to speech and patural-language genera-
tion the NLP incrementally generates a state transition
network. We implement this by adapting conventional
parsing afgo:-ithms, whereby states in the state transition
network are used as indices to stored parsing
configurations. The parser is called by the recognizer with
a state identifier and a word that has been hypothesized
by the recognizer starting in that state. The parser looks
up the parsing configurations corresponding to the state
and attempts to advance each of them by the word hy-
pothesized by the recognizer. (The parsing algorithm in-
corporates constraints {rom the left context, so not all
words are acceptable in all parsing configurations.} The
resulting parsing configurations are stored under a new in-
dex, which is passed back to the recognizer as the succeed-
ing state. The NL processor also computes a set of word
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predictions for that state.

When a set of parsing configurations is generated,
the NL processor can check whether that set of parsing
configurations has been generated before, and if so, it will
pass back the state identifier that was previously associat-
ed with those parsing configurations, to avoid unnecessari-
ly expanding the recognition search space. In practice we
have found that it is sufficient to simply let sequences of
words that have the same possible grammatical categories
lead to the state, as other situations where sets of parsing
configurations are duplicated are extremely rare.

Further details of the NL processor implementation
are discussed below.

Experimental Evaluations of the Architecture

Speeding Up NL Processing

Initially, we focused on efficient implementations of
the NL processor. Previous attempts at parsers for spo-
ken language systems had reported parse times of one or
more hours per sentence. Our first results showed that
these times could be improved substantially, though those
parse times were stil] far slower than real time. Table |
shows parse times for a set of 24 sentences tested in a
speaker independent system wusing a perplexity-510
syntax-only NL grammar for a 885 word subset of
DARPA's resource management task(8]. No word sequence
probabilities are used. The parser runs in Prolog on a
SUN4/280 computer. For comparison, a perplexity 091
all-word grammar achieved 82.6% word correct and a per-
plexity 60 word pair grammar achieved 97.19% correct for
this test set.

Mean Mean Mean Cumulative
Sentence Parsing Active Words Word
Length Time (sec) per Frame Accuracy
7.1 131 1470 884%
Table 1.

Parse Times for a Predicting Stack-Based Parser

We next sped up NL processing substantially in two
different ways. First, we noticed that a very large propor-
tion of the total NL processing time was consumed gen-
erating word predictions for the recognizer; the perplexity
of the NL grammar was so high, however, that this
resulted in only a modest amount of reduced work done
by the recognizer. We therefore altered the interaction
between the recognizer and the NL processor, to eliminate
the need to compute prediction lists in the NL processor.
In the modified architecture, the NL processor "predicts”
the entire vocabulary in every state. This has the result
that sometimes the recognizer hypothesizes a word that is
not a possible continuation of a state and the parser finds
that no parsing configurations in that state can be
advanced by the word. In this case, the NL processor
asks recognizer to prune that hypothesis from further

consideration.

The second modification we made was wholly inter-
nal to the parser. Most parsing algorithms are position-
based, in that they try to find phrases covering particular
segments of the input. Singe_in the dynamic grammar
network architecture, the parser does not have access to
information about locations of word hypotheses in the
input signal, for our initial implementation we chase a
stack-based parsing algorithm that did not require input
position information. With this algorithm, a parsing
configuration was taken to be a stack of grammatical
categories corresponding to a partial analysis of an initial
segment of the input signal. Later, we realized that it
was possible to implement a position-based parser, where
the states in the state transition network played the role
of input positions. In this parser, the data structures the
parser must Keep track of are associated directly with
states, rather than with stacks. Since, in general, one
state corresponds to many stacks, this parser builds many
fewer of these data structures, with a resulting increase in
efficiency.

The new parser was evaluated with the same 24 sen-
tence test set, with the results shown in Table 2.

Mean Mean Mean Cumulative
Sentence Parsing Active Words Word
Length Time (sec) er Fra Accuracy
il 12 2043 88.4%
Table 2.

Parse Times for a Filtering State-Based Parser

Note that the NLP times are reduced by an order of
magnitude, although the mean number of words/frame
being evaluated by the HMM system are increased as
expected. Eliminating prediction sped up the parser by a
factor of 4.9 and using a state-based parser improved the
speed by a lactor of 2.25.

Extensions to the Grammar

The grammar used for the parsers discussed above
parsed only 36% of the sentences in the resource manage-
ment task. After these experiments were completed, the
grammar was extended so that it covered the full 991-
Word vocabulary and parsed 91% of the resource manage-
ment sentences and 85% of the sentences in an
independently collected resource management database (a
portion of DARPA's TONE database with out-of-
vocabulary items modified). Parse times increased with
this new grammar by a factor of 3.5.

Fast Match

A fast match was added to the system. Every frame,
it uses acoustic evidence to rule out starting up abount
80% of the words in the vocabulary without introducing
additional error. Thus, even without a predicting parser
a particular state at a given time will only have about 200
instead of 901 predictions.
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Grammatical State-Width Pruning

The efficiency of our spoken language system archi-
tecture is sensitive to the amount of pruning that can be
done by the HMM system. If the system hardly prunes,
there will be an exponential increase in the number of
active words the system has to process as time moves on.
However, the system is well behaved with reasonable
pruning. Because of this we found that, although most
sentences paise normally, there are some sentences that
require excessive computation. We found that the key
factor in controlling the computation rate was limiting
the maximum number of shifts in a sentence. Therefore,
we devised the following algorithm that is very similar to
the standard HMM-based beam search technique.

. During every frame the grammatical states are
sorted by the best internal HMM-scores of each of
the state’s predictions.

e  The system only shifts completed words if the
word's predecessor grammatical state is one of the N
best states for that frame.

That is, we keep 2 beam of grammatical states, and only

perform shifts for states in the beam. Typical beam sizes

used are 20 or 30.

System Evaluation

The system has been evaluated on a portion of the
DARPA. speaker dependent resource management task.
The resuits in Table 3 are for three speakers using 279 of
the 300 development sentences for those speakers (the
other 21 sentences didn't parse).

The results in Table 3 indicate that our approach is
a promising one for large vocabulary spoken language sys-
tems. We have already achieved, for high perplexity syn-
tactic grammars, parse times within a factor of 20 of real
time with resulting HMM recognition computational
requirements (2500 active words/frame) that are within

the capability of high speed multiprocessor computers or
speciial purpose speech recognition hardware.

Our future plans include evaluating other search
strategies (e.g. stack decoding), improving the fast match
capability, and precompiling moré of the run-time compu-
tations the parser must perform. We will also incorporate
selectional restrictions and word sequence probabilities
into our grammar to reduce the resulting perplexity and
improve recognition performance. Finally we expect
evaluate recognition techniques that model the interac-
tions of natural language, prosody, and phonology, in the
context of our tight integration scheme.
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Mean Mean Mean SLS P-1000
Sentence Parsing Active Words Word Word
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Abstract

SRI has developed the DECIPHER system, 2
hidden Markov model (HMM{) based continuous speech
recognition system typically used in a speaker-indepen-
dent manner. Initially we review the DECIPHER sys-
tem, then we show that DECIPHER’s speaker-
independent performance improved by 20% when the
standard 3990-sentence speaker-independent test set was
sugmented with training data from the 7200-sentence re-
source management speaker-dependent training sentences.
We show a further improvement of over 205 when a
version of comrective training was implemented. Finally
we show improvement using parallel male- and female-
trained models in DECIPHER. The word-error rate
when all three improvements were combined was 3.7%
on DARPA'’s February 1989 speaker-independent test set
using the standard perplexity 60 wordpair grammar.

System Description

Front End Analysis

Decipher uses a FFT-based Melcepstra front
end. Twenty-five FFT-Mel filters spanning 100 @ 6400
hz are used to derive 12 Mel-cepstra coefficients every
10-ms frame. Four feawres are derived every frame from
this cepstra sequence. They are:

¢ Vector-quantized energy-normalized Mel-cepstra

* Vector-quantized smoothed 40-ms time derivatives of
the Mel-cepstra

. m

» Smoothed 40-ms energy differences

We use 256-word speaker-independent code-
books t vector-quantize the Mel-cepstra and the Mel-
cepstral  differences. The resulting four-feature-per-
frame vector is used as input to the DECIPHER HMM-
based speech recognition system.

Pronunciation Models

DECIPHER uses pronuncistion models generat-
ed by spplying a phonological rule set © word base-

forms. The technique used to generate the rules are
described in Murveit89 and Cohen90. These generate ap-
proximately 40 pronunciations per word as measured on
the DARPA resource management vocabulary. Speaker-
independent pronunciation probabilities are then estimat-
ed using these bushy word networks and the forward-
backward algorithm in DECIPHER. The networks are
then pruned so that only the likely pronunciations re-
main-—typically about four pronunciations per word for
the resource management task.

This modeling of pronunciation is one of the
ways that DECIPHER is distinguished from other
HMM-based systems. We have shown in Cohen90 that
this modeling improves system performance.

Acoustic Modeling

DECIPHER buikis and trains word models by
using context-based phone models srranged according o
Models used include unique-phone-in-word, phone-in-
word, triphone, biphone, and generalized-phone forms of
biphones and triphones, as well as context-independent
models. Similar contexts are automatically smoothed to-
gether, if they do not adequately model the training da-
ta, according © a deleted-estimation interpolation

algorithm developed at SRI (similar to Jelinek80). The

acoustic models reflect both inter-word and across-ward
coarticulatory effects.

Training proceeds as follows:

 Initially, context-independent boot models are
estimated from hand-labeled portions of the training
part of the TIMIT database.

e The boot models are used as input for a 2-iteration
context-independent model taining rmun, where
context-independent models are refined and
pronunciation probabilities are calculated using the
large 40-pronunciation word networks. As stated
shove, these large networks are then pruned to about
four pronunciations per word.




» Context-dependent models sre then estimated from a
second 2-iteration forward-backward run, which uses
the context-independent models and the pruned
networks as input.

System Evaluation

DECIPHER has been evaluated on the speaker-
independent continuous-speech DARPA resource manage-
ment test sets [Price88] [Pallet89]. DECIPHER was
evaluated on the November 1989 test set (evaluated by
SRI in March 1990) and had 6% word error on the per-
plexity 60 task. This performance was equal to the best
previously reported error rate for that condition. We re-
cently evaluated on the June 1990 sk, and achieved
6.5% word error for a system trained on 3990 sentences
and 4.8% word error using 11,190 training sentences.

Since the October 1989 evaluation, DECI-
PHER's performance has improved in three ways:

* We noted when using that the standard 3990-sentence
resource management fraining set, that many of
DECIPHER’s probability distributions were poorly
estimated. Therefore, we evalusted DECIPHER with
several different amounts of training data. The largest
training set we used, an 11,190-sentence resource
management training set, improved the word error rate
by about 20%.

* We implemented a modified version of IBM’s
corrective training algorithm, additionally improving
the word error rate by about 20%.

* We separated the male and female training data,
estimated different HMM output distributions for
each sex. This also improved word accuracy by 20%.

These improvements are described in more detail
below.

Etfects of Training Data

In a recent study, we discovered that DECI-
PHER'’s word error rate on its training set using the per-
plexity 60 grammar was very low (0.7% over the 3990
resource management sentences). Since the test-set efror
rate for that system was about 7%, we concluded that
the system would profit from more training data. To
test this, we evaluated the system with four databases
easily available to us as is shown in Table 1. There S/ re-
fers to the 3990-sentence speaker-independent portion of
the resource management (RM) database--109 speakers,
30 or 40 sentences each, SD refers to the speaker-depen-
dent portion of that database—12 speakers, 600 sentences
each, and TIMIT refers o the training portion of the
TIMIT database—420 speakers, 8 sentences each. Note
that all SI and SD sentences are related to the resource
management task, while TIMIT's sentences are not relat-
ed to that task. All systems were tested using a continu-

ous-speech, speaker-independent condition with the

perplexity 60 resource management grammar testing on
DARPA’s 300-sentence February 1989 speaker-indepen-
dent west set.

Irainingdata.  Sentences Word error

SD 7200 13

ST 3990 6.7

S1+TIMIT 7350 58

SI1+SD 11190 53
Table 1.

Word Error as a Function of Tralning Set

Table 1 shows that performance improved as da-
ta increased, even when adding the out-of-task TIMIT da-
ta. The only exception was that training with 3990
sentences from 100 talkers was slightly better than 7200
sentences from 12 wmlkers. This is to be expected in a
speaker-independent system. This last result is consis-
tent with the findings in Kubalab0 that showed that
there was not a big performance drop when the number
of speakers was drastically reduced (from 109 to 12) in
speaker-independent systems. It is likely that more train-
ing data would continue to improve performance on this
task: bowever, we believe that a more sensible swdy
would be to focus on how large training sets could im-
prove performance across tasks and vocabularies. (See,
for instance, Hon90.)

Separating Male and Female Models

We experimented with maintaining sex comsis-
tency in DECIPHER's hypotheses by partitioning male
and female training data and using parallel recognition
systems 35 in Bush87. Two subrecognizers are run in par-
allel on unknown speech and the hypothesis from either
recognizer with the highest probability is used. The dis-
advantage of this approach is that it makes inefficient use
of training data That is, in the best scenario the male
models are trained from only half of the training data
and the female models use only half. This is mefficient
because even though there may be a fundamental differ-
ence between the two types of speech, they still have
many things in common and could profit from the oth-
ers’ training data if used properly.

It is no wonder, then, that this approach has
been successful in digit recognition systems with an
abundance of training data for each parameter o be esti-
mated, but has not significantly improved perfarmance
in large-vocabulary systems with a relatively small
amount of training data {Paul89). To validate the idea of
sex consistency, we trained male-only and female-only
versions of the DECIPHER speech recognition system us-
ing the 11190-sentence SI+SD training set to make sure
the data partiions had enough data. We produced SI+SD
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subsets with 4160 female and 7030 male sentences. These
systems were tested on the DARPA February 1989
speaker-independent test set using the DARPA word-
pair grammar (perplexity 60) and are compared below to
a3 similar recognition system trained on all 11190 sen-
tences.

Standard Male/Female

Male speakers 55 4.6
Female speakers 4.9 4.0
All speakers 53 43

Table 2. Speaker-Independent %Word Error
for Male/Female Parallel Recognizers
(February 1989 SI Test Set)

The results in Table 2 show a3 19% reduction in
the error rate when using sex-consistent recognition sys-
tems. This is a significant error rate reduction. A closer
look at the system’s performance showed that it correct-

ly assigned the talker’s sex in each of the 300 test sen-
tences.

Discriminative Techniques Currently in
DECIPHER

We have implemented a type of corrective train-
ing [Bahl88, Lee89] in the DECIPHER system. Our im-
plementadon is similar to that described in Lee89 with
the following exceptions or notes:

1. We use four partitions (rather than two) for our de-
leted estimation technique. In this way, the recogni-
tion systems used tc zenerate alignments for
carrective training are as similar as possible to the
overall recognition system.

2. We donot alter the actual HMM counts for states,
but rather scale the states’ vector output probabili-
ties by the ratio (#correct+#deletions-#insertions)
divided by #correct. These counts are generated by
frame alignments of the recognizer hypothesis and
the correct sentence. This improves performance
from 5.9% word error to 5.1% on the February 1989
test set using the standard SI training set—-the uncor-
rected system has 6.7% word error. The reason for
this improvement may be that adjusting the counts
of a model affects other models (given our deleted
interpolation estimation smoothing algorithms) that
do not require carrection. Scaling mode! probabili-
ties only adjusts the models that require change.

3. We do not generate reinforcement errors. We plan
to do 30 using an N-best algorithm to generate alter-
nate hypotheses.

4. We can not iterate the algorithm until the N-best re-
inforcement is implemented, because the second itera-
tion error rate on the sentences that had been
corrected by the first iteration was under 0.3%.

Our implementation reduced the error rate on
the February 1989 test set by *4% (6.7% to 5.1%) which
is approximately the improvement gained by Lee89 and
Bahiss. -

Points 3 and 4 above are a concern, because they
limit the efficiency with which this algorithm could use
its already limited training data. To examine this, we
performed the following two experiments. (1) We add-
ed a second pass of comective traming, using the speaker-
dependent RM training sentences (SD). (2) We combined
SD and the SI sentences, thereby using a larger overall
training set, but continued to use onc pass of corective
training. Table 3 shows that, not surprisingly, though

System Training Word Ervor
DO correction Ly | 67%
1 pass correction  SI 51%
add 2nd SD pass SI 46%
no correction S1+SD 53%
1 pass correction  SI+SD 41%
Table 3. Corrective Training
with Extra Data
(Uses February 1989 RM Test Set)

there was improvement when extra data were used as 3
second pass for the corrective training algorithm, it was
better to use these data to simply sugment the training
data (4.6% versus 4.1% word emor). It is also interest-
ing ® note that the improvement gained by corrective
training with the 3990 SI sentences (6.7% o 5.1%, 24%
fewer errors) was approximately equal to the improve-
ment gained by applying comrective training to the larger
11190 SI+SD sentences (5.3% to 4.1%, 23% fewer ex-
rors). This leads us to believe that lack of training data
is not more of a bottleneck for corrective training than
it is for the system as a whole.

Combining Corrective Training and
Sex Consistency

We combined both sex consistency and correc-
tive training and arrived at the improvement shown in
Table 4. We didn’t achieve the same 20% improvement as
in the past, probably due to training data limitations.

Attempting the combined system with the stan-
dard 3990-sentence training set resulted in poor perfor-
mance, primarily because the female models used to train
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the corrective training partitions had only 870 sentences
of training data.

Svstem  Training Data Word error

Standard SI 6.7
Standard SI+SD 53
+disc SI 5.1
+sex S1+SD 53
+disc SI+SD 4.1
+disc+sex SI+SD 37
Table 4. Summary of Improvements
for DECIPHER
(Uses February 1989 RM Test Set)
Summary

We have shown significant improvements for
the DECIPHER speech recognition system by (1) increas-
ing training data size, (2) implementing corrective train-
ing, and (3) separating male and female training data.
We have combined all three improvements to achieve our
best performing system, one that has a word-error rate
of 3.7% on DARPA’s resource management February
1989 speaker-independent test set.

We believe that the use of a large training set al-
lows significant improvements in speech recognition ac-
curacy, and therefore we advocate using the larger
training set as a standard in future system evaluations.
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Evaluation of Spoken Language Systems:
the ATIS Domain
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Abstract

Progress can be measured and encouraged via standards
for comparison and evaluation. Though qualitative as-
sessments can be useful in initial stages, quantifiable
measures of systems under the same conditions are es-
sential for comparing results and assessing claims. This
paper will address the emerging standards for evaluation
of spoken language systems.

Introduction and Background
Numbers are meaningless unless it is clear where they
come from. The svaluation of any technology is greatly
enhanced in usefulness if accompanied by documented
standards for assessment. There has been a growing ap-
preciation in the speech recognition community of the
importance of standards for reporting performance. The
availability of standard databases and protocols for eval-
uation has been an important component in progress in
the field and in the sharing of new ideas. Progress toward
evaluating spoken language systems, like the technology
itself, is beginning to emerge. This paper presents some
background on the problem and outlines the issues and
initial experiments in evaluating spoken language sys-
tems in the “common” task domain, known as ATIS (Air
Travel Information Service).

The speech recognition community has reached agree-
ment on some standards for evaluating speech recogni-
tion systems, and is beginning to evolve a mechanism for
revising these standards as the needs of the community
change (e.g., as new systems require new kinds of data, as
new systemn capabilities emerge, or as refinements in ex-
isting methods develop). A protocol for testing speaker-
dependent and speaker-independent speech recognition
systems on read speech with a 1000-word vocabulary,
(e.g., [6]), coordinated through the National Institute of
Standards and Technology (NIST), has been operating
for several years. This mechanism has inspired a healthy
environment of competitive cooperation, and has led to
documented major performance improvements and has
increased the sharing of methodologies and of data.

Evaluation of natural language (NL) understanding
is more difficult than recognition because (1) the pie-
nomena of interest occur less frequently (a given corpus

contains more phones and words than syntactic or se-
mantic phenomena), (2) semantics is far more domain
dependent than phonetics or phonology, hence changing
domains is more labor intensive, and (3) there is less
agreement on what constitutes the “correct” analysis.
However, MUCK, Message Understanding Conference,
is planning the third in a series of message understand-
ing evaluations for later this year (August 1990). The
objective is to carry out evaluations of text interpreta-
tion systems. The previous evaluation, carried out in
March-June 1989, yielded quantitative measures of per-
formance for eight natural language processing systems
(4, 5]. The systems are evaluated on performance on
a template-filling task and scored on measures of com-
pleteness and precision {7].

So far, we have discussed the evalu:tion of antomatic
speech recognition (i.e., the algorithmic translation from
human speech to machine readable text), and of some
aspects of natural language understanding (i.e., the au-
tomatic computation of a meaning and the generation,
if needed, of an appropriate response). The evalua-
tion of spoken language systems represents a big step
beyond the previous evaluation mechanisms described.
The input is spontaneous, rather than read, speech. The
speech is recorded in an office environment, rather than
in a sound-isolated booth. The subjects are involved
in problem-solving scenarios. The systems to be tested
will be evaluated on the answers returned from a com-
mon database. The rest of this paper focuses on the
steps taken by the DARPA speech and natural language
community to develop a common evaluation database
and scoring software and protocols. The first use of this
mechanism took place June 1990. However, given the
greatly increased challenge, the first use of the mecha-
nism is more a test of the mechanism than of the systems
evaluated.

It has become clear in carrying out the evaluation
mechanism that the needs of common evaluation are
sometimes at odds with the needs of well-designed sys-
tems. In particular, the common evaluation ignores di-
alogue bevond a single query-response pair, and all in-
teractive aspects of systems. A proposal for dialogue
evaluation is included in (3], this volume.

Though the initial evaluation mechanism, described
below, represents a major effort, and an enormous ad-
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vance over past evaluations, we stil! fall short of a com-
pletely adequate evaluation mechanism for spoken lan-
guage systems. Some forms of evaluation may have 1o be
postponed to the sysiem level and measured in terms of
time to complete a task, or units sold. Ve need to con-
tinue to elaborate methods of evaluation that are mean-
ingful. Numbers alone are insufficient. We need to find
ways of gaining insight into differences that distinguish
various systems or system configurations.

Issues

In this section we will outline the major evaluation is-
sues that have taken up a good dea! of our time and
energy over the past several months, including: the sep-
aration of training and testing materials, black bax vs.
glass box evaluations, quantitative vs. qualitative eval-
uation, the selection of a domain, the collection of the
data, transcribing and processing the data, documenting
and classifying the data, obtaining canonical answers,
and scoring of answers.

Independent Training and Test Sets

The importance of independent training/development
data and testing data has been acknowledged in speech
recognition evaluation for some time. The idea is less
prominent in natural language understanding. The fo-
cus in linguistics on competence rather than performance
has meant that many developers of syntactic and seman-
tic models have not traditionally evaluated their systems
on a corpus of observed data. Those who have looked
at data, have typically referred to a few token exam-
ples and have not evaluated systematically on an entire
corpus. Still more rare is evaluation on an independent
corpus, a corpus not used to derive or modify the theory
or model. There is no doubt that a system can eventu-
ally be made to handle any finite number of evaluation
sentences. Having a test suite of phenomena is essential
for evaluating and comparing competing theories. More
important for an application, however, is a test on an in-
dependent set of sentences that represent phenomena the
system is likely to encounter. This ensures that develop-
ers bave handled the phenomena observed in the training
set in 2 manner that will generalize, and it properly (for
systems rather than theories) focuses the evaluation of
various phenomena in proportion to their likelihood of
occurrence. That is, though from a theoretical perspec-
tive it may be important to cover certain phenomena, in
an application, the coverage of those phenomena must
be weighed against the costs (how much larger or slower
is the resulting system) and benefits (how frequently do
the phenomena occur).

Black Box versus Glass Box Evaluation

Evaluating components of a system is important in sys-
tem development. though not necessarily useful for com-
paring various systems, unless the systems evaluated are

very similar. which is not ofien the case. Since tae mou-
vation for evaluating components of a svsiem 1s for inter-
nal testing, there is less need o reach wide-spread agree
ment in the community on the measurement methodol-
ogy. System-internal measures can be used ic evalu-
ate component technologies as 2 function of their design
parameters; for example, recognition accuracy ~an be
tested as a function of syntactic and phonological per-
plexity, and parser performance can be measured as a
function of the accuracy of the word input. In addi-
tion, these measures are useful in assessing the amount
of progress being made. and how changes in various com-
ponents affect each other.

A useful means of evaluating svstem performance is
the time to complete a task successfully. This measure
cannot be used to compare systems unless they are aimed
at completing the same task. It is, however, usefu] in
assessing the system in comparison to problem solving
without the spoken language system in question. Fc:
example, if the alternative to a database querv spoken
language system is the analysis of huge stacks of paper-
work, the simple measure of time-to-complete-task can
be important in showing the efficiency gains of such a
system.

Time-to-complete-task, however, is a difficult measure
to use in evaluating a decision-support system because
(1) individual differences in cognitive skill in the po-
tential user population will be large in relation to the
system-related differences under test, and (2) the puzzie
solving nature of the task may complicate procedures
that reuse subjects as their own controls. Therefore,
care should be taken in the design of such measures.
For example, it is clear that when variability across sub-
jects is large, it is important to evaluate on a large pool
of users, or to use a within-subject design. The lat-
ter is possible if equivalent forms of certain tasks can
be developed. In this case, each subject could perform
one form of the task using the spoken language system
and another form using an alternative (such as examin-
ing stacks of papers, or using typed rather than spoken
input, or using a database query language rather than
patural language).

Quantitative versus Qualitative
Evaluation

Qualitative evaluation (for example, do users seem to
like the system) can be encouraging, rewarding and can
even sell systems. But more convincing to those who
cannot observe the system themselves are quantitative
automated measures. Automation of the measures is
important because we want ‘o avoid any possibility of
nudging the data wittingly or unwittingly, and of er-
rors arising from fatigue and inattention. Further, if
the process is automated, we can observe far more data
than otherwise possible, which is important in language,
where the units occur infrequently and where the vari-
ation across subjects is large. For these measures to be
meaningful, they should be standardized insofar as pos-
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sible, and they should be reproducible. These are the
goals of the DARPA-NIST protocols for evaluation of
spoken language systems. These constraints form a real
challenge to the community in defining meaningful per-
formance measures.

Limiting the Domain

Spoken language systems for the near future will not
handle all of English, but, rather, will be limited to a
domain-specific sub-language. Accurate modeling of the
sub-language will depend on analysis of domain-specific
data. Since no spoken language systems currently have
a wide range of users, and since variability across users
is expected to be large, we are simulating applications
in which a large population of potential users can be
sampled.

The domain used for the standard evaluation is ATIS
using the on-line Official Airline Guide (OAG), which
we have put into a relational format. This application
has many advantages for an initial system, including the
following:

o It takes advantage of an existing public domain real
database, the Official Airline Guide, used by hun-
dreds of thousands of people.

¢ It isarich and interesting domain, including data on
schedules and fares, hotels and car rentals, ground
transportation, local information, airport statistics,
trip and travel packages, and on-time rates.

¢ A wide pool of users are familiar with the domain
and can understand and appreciate problem solv-
ing in the domain (this is crucial both for initial
data collection for development and for demonstrat-
ing the advantages of a new technology to potential
future users in a wide variety of domains).

e The domain can be easily scaled with the technol-
ogy, which is important for rapid prototyping and
for taking advantage of advances in capabilities.

¢ The domain includes a good deal that can be ported
to other domains, such as generic database query
and interactive problem solving.

Related to the issue of limiting the domain is the is-
sue of limiting the vocabulary. In the past, for speech
recognition, we have usad a fixed vocabulary. For spon-
taneous speech, however, as opposed to read speech, how
does one specify the vocabulary? Iaitially, we have not
fixed the vocabulary, and merely observed the lexical
items that occur. However, it is an impossible task to
fully account for every possible word that might occur,
and it is a very large task to derive methods to detect
new words. It is also a very large task to properly han-
dle these new words, and one that probably will involve
interactive systems that do not meet the requirements
of our current common evaluation methods. However.
there is evidence that people can accomplish tasks using

a quite restricted vocabulary. Therefore, it may be possi-
ble to provide some training of subjects, and some tools
in the data ccilection methods so that a fixed vocab-
ulary can be specified and feedback can automatically
be given to subjects when extra-lexical material occurs.
This would meet the needs of spontaneous speech, of
common evaluation and of a fixed vocabulary (where one
could choose to include or exclude the occurring extra-
lexical items in the evaluation).

Collecting Data for Evaluation
In order to collect the data we need for evaluating spoken
language systems, we have developed a pnambic system

-(named after the line in the Wizard of Oz: “pay no at-

tention to the man behind the curtain”). In this system
a subject is led to believe that the interaction is taking
place with a computer, when in fact the queries are han-
dled by a transcriber wizard (who transcribes the speech
and sends it to the subject’s screen) and a database wiz-
ard who is supplied with a tool for rapid access to the
online database in order to respond to the queries. The
wizard is not allowed to perform complex tasks. The
wizard may only retrieve data from the database or send
one of a small aumber of other responses, such as “your
query requires reasoning beyond the capabilities of the
system.” In general, the guidelines for the wizard are
to handle requests that the wizard understands and the
database can answer. The data must be analyzed after-
wards to assess whether the wizard did the right tiing.

The subjects in the data collection are asked to solve
one of several air travel planning scenarios. The goal
of the scenarios is to inspire the subjects with realistic
problems and to help them focus on problem solving. A
sample scenario is:

Plan a business trip to 4 different cities (of
your choice), using public ground transporta-
tion to and from the airports. Save time and
money where you can. The client is an airplane
buff and enjoys flying on different kinds of air-
craft.

Further details on the data collection mechanism is
provided in (2] in this volume.

Transcription Conventions

The session transcriptions, i.e., the sentences displayed
to the subject, represent the subject’s speech in a nat-
ural English text style. Errors or dysfluencies (such as
false starts) that the subject corrects will not appear in
the transcription. Grammatical errors that the subject
does not correct (such as number disagreement) will ap-
pear in the transcription as spoken by the subject. The
transcription wizard will follow general English princi-
ples, such as those described in The Chicago Manual of
Style (13th Edition. 1982). The tremendous interactive
pressure on the transcription wizard wiil inevitably lead
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to transcripuion errors, so these conventions serve as a
guide.

This initial transcription will then be verified and
cleaned up as required. The result can be used as conven-
tional input to text-based natural language understand-
ing systems. It will represent what the subject “meant
to say”, in that it will not include dysfluencies corrected
by the subject. However, it may contain uggrammaticai
input.

In order to evaluate the differences between previ-
ously collected read-speech corpera and the spontaneous-
speech corpus, subjects will read the transcriptions of
their sessions. The text used to prompt this reading will
be derived from the natural language transcription while
listening to the spoken input. It will obey standard tex-
tual transcriptions to look natural to the user, except
where thic might affect the utterance. For example, for
the fare restriction code “VU/1” the prompt may appear
as “V U slash one” or as “V U one”, depending on what
the subject said.

Finally, the above transcription needs to be further
modified to take into account various speech phenom-
ena. according to conventions for their representation.
For example, obviously mispronounced words that are
nevertheless intelligible will be marked with asterisks,
words verbally deleted by the subject will be enclosed in
angle brackets, words interrupted will end in a hyphen,
some non-speech acoustic events wiil be noted in square
brackets, pauses will be be marked with a period approx-
imately corresponding to each elapsed second, commas
will be used for less salient boundaries, an exclamation
mark before a word or syllable indicates emphatic stress,
and unusual vowel lengthening will be indicated by a
colon immediately after the lengthened sound. Some of
the indications will be useful for speech recognition sys-
tems, but not all of them will be included in the reference
strings for evaluating the speech recognition output.

The various transcriptions are illustrated in the ex-
amples below, with the agreed upon file extensions in
parentheses, where applicable:

o SESSION TRANSCRIPTION:
Show me a generic description of a 757.

e NL TEXT INPUT (.nli):
Show me a general description of a 757.

+ PROMPTING TEXT (.ptx):
Show me a general description of a seven fifty sevea.

+ SPEECH DETAIL (.sro):
<list> show me: a general description, of a seven
fifty seven

o SPEECH REFERENCE (.snr):
SHOW ME A GENERAL DESCRIPTION OF A
SEVEN FIFTY SEVEN

Data Classification
Once collected and processed, the data will have o be
classified. Ambiguous queries will be excluded from the

evaluation set only if it is impossible for a person to tell
without context what the preferred reading 1s. Another
i1ssue 1s minor syntactic or semantic ill-formedness. Qur
zuideline here is that if the query is interpretablie, it will
be accepted, unless it is so ill-formed that it is ciear that
it is not intended to be normal conversational English
All presuppositions about the number of answers (either
existence or uniqueness) will be ignored, and these are
the oniy types of presupposition failures noted to date.
Any other types of presupposition failure that make the
query truly unanswerable will no doubt also have made
it impossible for the wizard to generate a database query,
and will be ruled out on those grounds. Queries that are
formed of more than one sentence will not automatically
be ruled out. The examples observed so far are clearly
interpretable as expressing multiple constraints that can
be combined into a single query.

Evaluatable queries will be identified by exception,
i.e., those that are none of the following:

1. context dependent,

2. vague, ambiguous, disambiguated only by context,
or otherwise failing to yield a single canonical
database answer,

3. grossly ill-formed,

4. other unanswerable queries (i.e., those r.. given a
database by the wizard),

. queries from a noncooperasive subject.

(41}

Canonical Answers and Scoring

Canonical answers will, in general, be the corrected ver-
sion of the answer returned under the wizard’s control.
These will have to be cleaned up in the case that the
wizard makes an error, or if the answer given by the
wizard was the (cooperative) context-dependent answer,
which may differ from a context-independent answer, if
it exists. In the context of a database query system,
the wizard is instructed to interpret gueries broadly as
database requests. Thus, we believe that “yes/no” ques-
tions will be in general interpreted as a request for a list,
rather than the word “yes” or “no”, as in “Are there any
morning flights to Denver? Other conventions involve
treatment of strings for comparison purposes and case-
sensitivity, the appearance of extra columns in tabular
answers, and the inclusion of identifying fields (see {1}
for details).

Scoring is accomplished using standardized software,
and conventions for inputs and outputs. Comparing
scalar answers simply means comparing values. Table
answers are more inieresting, since in ger axral the order
of the columns is irrelevant to correctness. For single-
element answers, a scalar answer and a table containing
a single element are judged equivalent, for both specifi-
cations and answers. For our first experiment with the
new protocols, sites were only required to report results
on the natural language component. The transcriptions
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were released a few days before the results were to be
reported. One site, CMU, reported results on speech
inputs. See {1] for further details on scoring.

Conclusions

The process of coming to agreement on conventions for
evaluation of spoken language systems, and implement-
ing such procedures has been a larger task than most of
us anticipated. We are still learning, and sometimes it
has been painful. However, the rewards of an automatic,
common mechanism for systemn evaluation is worth the
effort, and we believe the spoken language program will
benefit enormously from this effort. There still is 2 good
deal more work to do as we find ways to meet the con-
straints of evaluation in a way that makes sense for the
development of spoken language systems.
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Abstract

SR1is developing a spoken language system (SL.S) that should permit natu-
ral and efficient communication with an air rave! information system. SLS
development at SR1 divides roughly into three areas: speech recognition,
natural language processing, and human interface design. The paper presents
an overview of SRI's development effort and an analysis of seiected techni-
cal challenges in subparts of this effort, including the choice of inital
domains for such technology, the architecture for the integration of the two
technologies, the atributes of goal-directed spontanegus speech, and the
evaluation of spoken language systems.

1.0 Introducton

Combining speech recognition and natural language understanding will
vastly increase the number and range of potential applicauons for both tech-
nologies. Speech recognition without natural fanguage results in a ranscnp-
tion of the words spoken; adding an interpretation of what those words mean
opens a vast range of possibilities in human-machine interaction. Natural
language technology without speech recognition requires typing skills and
makes unnecessary demands on the eyes, the hands, and the brain. Freeing
the eyes, hands, and brain of the user from the keyboard will allow for more
efficiency, better use of visual displays and mouse interactions, inieractive
problem solving during hands-busy tasks, and flexible welephone applica-
tons. By using spoken natural language, the user can focus more on the
oroblem 1o be solved and less on how to formulate it adequately for the com-
puter.

A further manvation for the integration of speech recognition and natural
language understanding is the belief that each technology could be improved
Sy waking advantage of the other. Not every word can follow every other
word. This is true in any language. Grammars are expressions of conditions
on possible word sequences. Constraining the possible, or likely, sequences
of words has had a major impact on large-vocabulary speech recogniton
because it effectvely reduces the work done by the recognizer and elimi-
nates many otherwise possible sources of confusion. Taking advantage of the
grammaucal constraints of a Janguage could be important in improving
speech recognition performance. With the exception of small domain-depen-
dent grammars, such constraint to date typically comes from models of the
stausacal properties of word sequences. Such grammars have difficulty
expressing constraints that are based on grammatical relations that may s,.an
an arbizrary number of words. Just as nawral language constraints couid
improve speech recognition, information from speech could improve natural
language understanding: Speech includes much information that is not indi-
cated in the text, such as lexical, phrasal and contrastive stress, and prosodic
groupings of words. Such information can aid lexical decisions (¢.g., is the
word "OBject” or “obJECT™) as well as syntactic and semantic decisions.

The attempt to go beyond speech ranscription and to go beyond text under-
standing by moving toward spoken language understanding opens an excit-
ing new array of possibilities for human-machine interaction. It also opens 2

new aTay of issues not previously faced. The issues discussed in this paper
include:

« The choice of initial domains for such technology

- The architecture for the integrauon of the two wechnologies

+ The auributes of goal-directed spontanecus speech

- Evaluation of spoken language systems.

20 Domains

Spoken language understanding is a technology in its infancy. The first sys-
tems will be extremely limited. and we have lintie expenence in the human
factors 1ssues of integraiing the technology into an applicauon. Spoken lan-
guage understanding is an exciting area for human-machine interaction
because people are used w solving problems interacuvely by voice. For this
same reason, however, adding spoken language understanding to an inter-
face may iead the user 10 believe the system has reasoning and understand-
ing capabiliges beyond current achievements.

Designing the human interface for inserting 3 new technology in an applica-
tion is difficult, since we have no existing systems (o observe. A promusing
technique for gaining the required data on human-machine interacuons is the
use of simulations of applications. Since vanability across users i speech
and language is quite large, nitia) sysiems should focus on applicaucns
which a large populauon of potanual users can be sampled. The data thus
obtained can be used to develop initial systems and to develop methods for
obuining more such data efficiently for future systems.

The domain SRI has chosen for its first spoken-language, interacuve, prob-
tem solving system is air travel planning. This domain has several important
advantages as a first arex

+ 1 takes advantage of an existing public domain real database, the Offi-
cial Airline Guide, used by hundreds of thousands of people in the
United States.

« Itis arich and interesting domain, including data on schedules and
fares. hotels and car rentals, ground transportation, local information,
airpon statistics, tnip and travel packages, on-ume rates, and so on.

« A wide pool of users are familiar with the domain and can understand
and appreciate problem solving in the domain. (This is crucial both
for initial data collection for development and for demonstratng the
advantages of 2 new technology to potential future users in a wide
variety of domains.)

« The domain can be easily scaled with the technology, which is impor-
tant for rapid prototyping and for taking advantage of agvances in
capabilities.

« The domain includes a significant amount that can be ported 10 other
domains, such as generic database query and interactive problem
solving,
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30 Integration Architecture

3.1 Previous Approaches

A speech recognition component might communieate n several different
ways with a nawral language ynderstanding component. Perhaps the most
strasghtforward approach is 2 senal connection. In this scheme. the speech is
nput 10 the recognition system which. on the basis of the speech alone, out-
pulLs 11s best hypothesis o the natural language understanding system, which
computes a meaning on the basis of text alone. There 15 n¢ feedback in thrs
scheme: the speech component does not have access (o syniax and semanucs
in hypothesizing words. and the nawral language component does not have
access to, for example, the prosody of the speech for undersianding contras-
tive soess. This approach has the advanuage of being simpiz and of puting
no additional effort into either of the two component technoiogies. )t also has
the advantage of requiring minimal communicauon between two culturally
disunct groups: the engineers that dominate the speech recognition commu-
nity and the artificial intelligence community that dominates natyral lan-
guage undersianding.

Senai iegration 1s, however, suboptimal because 1t does not take advantage
of all the informauon available. A sentence that is misrecoznized may have
hittle hope of receiving a proper interpretaton. We know thas humans use a
good deal of knowledge about syntax and semanucs in snterpreting what
another person has said. A spoken language system should be abdle 10 take
advantage of this information as well. Modifications w the stnct senal archi-
ecture include sending a large ladtice of words from the speech recognition
component or a sequence of sentence hypotheses. This allows the syntazx or
semantics o explore more than just the best speech hypothesis. Sending a
large lawice can reduce the ervor rate, provided the correct set of words is
somewhere in the lattce or sentence list. Architactures of this type have been
explored (Schwartz & Chow 1989; Paul 1989). However, a tighter integrs-
tion should improve performance by allowing more communication among
the components earlier in the process.

32 SRI's Frame-level integration

More communication between the speech and the undersianding compo-
nents involve more complex architecmres, but should improve both the
speed and the accuracy of the spoken language system. SR1is investigating a
unique frame-level integration (information between the tao components is
exchanged every 10 msec) that allows a computationally efficient use of nat-
ural language constraints in the speech recognition search. This system
architecture allows for independent development ye: integrated application
of constrainis from phonetics through semantcs.

fW\/‘*“ Feature m HMM Word

Extraction 1 Matcher
acoustc

SRI's approch, called dvnanuc grammar network (DGN) generauon (Mur-
veirt & Moore 19905, represents natural language knowledge 1n a state vansi-
pon network, similar o finite-state janguage models used elsewhere for
speech recoghiuon systems. A sgaightfarward implementation of this
approach is not feasible, however, because typical NL systems would gener.
aie unmanageably large or infinite networks . Therefore, the network 18 gen-
erated on the fly, and only the poruons of the network within a pruned search
are expanded. Thus, the state-ransison network generated for a parocular
spoken sentence + ‘! be relauvely small, and different from that generated
for a different vues: e

The approach is descnved graptacally in Figure 1 The sysiem runs as if 1t
were a standard speech recopninon systerm based on a hidden Markov model
(HMM; using a fanguuge model based on a state-ganswion network. When
the system 1s started up. the state-ransiuon network CONLaNS an Insuaj state,
a bist of the words that can leave that st (predicuonsi, and markers ingdicat-
ing that the states that would be reached from these iniual predictions are
blocked--not yet included n the state ransiuon network. The speech recog -
nition (SR) sysiem begins by searching for the words in the tmiual state's
predicuon hist using 3 standard beam search. When a state 15 reached that s
not in the netw~ . the SR system calls the nawral language processing
(NLP) system wii.zh runs the parser. and creates the needed staie. The SR
system can then conunue unu! it biocks again The process of accepung the
compleuon of a word from a state in the network and generaung a new state
15 called a shift. as st corresponds 1o a shilt in a shufi-reduce nawral language
parser (Aho & Uliman 1979).

The shift process continues until the entire signal s exhausted. Words ending
at the end of the signal are checked 1o see if they reach 2 final state.-a state
such that the hypotheses reaching that state are acceptable as complete uiter-
ances—and the most probable final-state hypothesis 15 chosen as the recog-
nized sentence.

This approach allows a tight coupling of SR and NLP algorithms and has the
following advantages:

« Itbrings all knowledge to bear as soon as possible so that exwra work
need not be done (for instance, the recognizer will not pursue hypoth-
eses that can be ruled out by NLP and vice versa). In contrast to an
equivalent system based on word iatuces. a dynamic-grammar net-
work system would not search poruons of the signal that correspond
to word-iaice entries that are unlikely according to previous acous-
tics or naturat language.

« Italiows for interactions between speech and NLP. For instance. an
acousuc recognition model can be altered if the NLP system judges
that the word should be emphasized given its syntactic or semantic
position.

i

start word arc State the ship . ..

Transition |—————
recognized string

speech features

Dynamic Grammar Networks
in Speech Recognition and
Natural Language Processing

shi extend next
@/M{\ word word
arc arcs

Net Processor

finished word arc
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{ e

Natural
Language
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« in addiuon, this approach has the impartant ad anuge that. from the
perspeclive of the recognilion sysiem, finite-slaz 1anguage con-
sgants are used. Thus, all of the expenence the speech recognition
community has developed for dealing with finitz-state-based speech
recognition sysiems still applies 10 this system For instance, a stan-
dard beam-search pruning technique is used m tous system ( Lowerre
1976).

4.0 Goal-Direcied Speech

When a person s diciating to a system the goal is to communicate the words;
the speaker is more likeiy to enunciate carefully and 10 focus on how the
words are produced. When, however, a person is involved in interacuve
problem soiving, the focus is not, or should not be, on the speech itself, but
on the problem to be solved. This means that the speech is likely to be less
careful and more casual. in particular, this means that there may be more
variability in pronunciation, and that segments and syllables may be more
likely to be reduced or deleted. It also means that more instances of “non-
standard” grammatical forms will occur.

4.1 Phonological Vanaton

SR1I has partially addressed the issue of phonological vanation by incorpo-
rating detailed, statistically trained models of possible pronunciations for
words {Cohen 1989, Cohen et al. 1990). The rules for pronunciation varia-
tions are created once for English and then can be applied 10 automaticaily
generate a network of possible pronunciations for any new word. The likeli-
hoods of the variants can aiso be automaticaily estimated on the basis of
observations of the occurrences of similar instances in taining data that need
not contain the new words.

4.2 Grammatical Variaton

The common production of non-standard grammatical forms brings into
focus the trade-off between complete understanding of 2 given utterance and
reliance on aliernative techniques for interpretaton. Even within a restricted
domain, full understanding of any utterance, is difficult to accomplish. Lan-
guage is productive, 50 new constructions appear frequently. Further, people
often get distracted or change their minds in mid-sentence, which can result
in wide deviations from “standard” language structure. Therefore, it seems
useful 10 allow some flexibility in what the grammar will allow. However,
accommodating more constructions typically requires more computation
(and longer waiting ime for the user), and also will provide less constraint
{and thus make greater demands of accuracy on the recogniuon component).
One solution to this problem is 10 bring more knowledge scurces to bear,
such as dialogue or plan models. However, a new domain has litde data
available on which to base a plan model, and poor models can perform worse
than no model at all. At SR1 we are expioring various combinations of tight
and flexible grammars, trying 10 obtain the advantages of both. For the time
being, SRI is pursuing the idea of cascading an analytical, linguistically-
based grammar with a template-filler grammar so that the template filler can
analyze those sentences that the analytical system cannot handle.

4.3 Template Grammar
In our initial work in this area, we have constructed a template-based gram-

mar based n an analysis of frequently occurring patiems in the air wavel
planning domain.
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We created lemplates corresponding o several common types of informaucn
that can be produced by the sysiem (for example, schedules of flights, fares.
seat availabilnty, etc.) Templates are thggered based on the existence of key-
words within a2 senwence, and muluple templates can be tn~gered for the
same sentence. Templates contain slots such as the ongin and desunation of
a fught in quesuon. The slots are filled in from phrases following siot-key-
words. Thus, for example, in the sentence “What flights leave San Francisco
for Boston on Sunday™ the word flights will be 2 keyword mggenng the
“Flights™ template. “leave™ will cause the next phrase (if it is 3 city or ais-
port} 1o be placed in the from-slot, “for” will cause the next phrase (if it1s a
city of airport) 10 be placed 1n the to-siot. and on (if the next phrase is 3 ume)
will cause the ume slol for the faghts quesnion o be filled.

Template hypotheses are scored according to the percentage of content
words used in filling the slots of the template. The template with the highest
score is selecied for interpretauon. However, this grammar has a “cut-off™
parameter for template scores that can be set to trade off wrong answers with
no answers. That is, when the system is unsure, it can either guess, or admit
that it doesn’t know. Different applications would require different setangs
of this parameter. Qur initial results with this system are very encouraging.
On a fair test (tesung on data not used in development) using DARPA stan-
dards for evaluation, we recently obtained the results shown 1n Table 1 for
various setungs of the cut-off parameter.

TABLE 1 POARSING PERFORMANCE AS A FUNCTION OF CUT-
FF

Cut-oft Right Wrong No Answer
0.0 5§ 13 22
0.833 42 L 44
10 37 2 51

These are very preliminary results, and much work remains to be done to
combine the two grammars.

50 Evaluation

Progress can be measured and encouraged via standards for comparison and
evaluation. Although qualitaive assessments can be useful in initial stages,
guantifiable measures of systems under the same conditions are essential for
comparing results and assessing claims. Numbers are meaningless unless it
is clear where they come from. The evatuation of any technology is greatly
enhanced in usefulness if accompanied by documented standards for assess-
ment. There has been a growing appreciation in the speech recognition com-
munity of the importance of standasds for reporting performance. The
availability of standard databases and protocols for evaluation has been an
important component in progress in the field and in the sharing of new ideas.
Progress toward evaluating spoken language systems, like the technology
itself, is beginning to emerge. The following issues have been important in
coming Lo agreement on standards for evaluation.




5.1 InZzpendent Training and Test Sets

The importance of independent training/development data and testing data
has been acknowledged in speech recognition evaluation for some time. The
idea is less prominent in natural language understanding because, from a the-
oretical perspective, it may be imparuant 1o work on a certain class of phe-
nomena. In an application, however, the coverage of a cerain class of
phenomena must be weighed against the costs (how much larger or slower is
the resulting system) and benefits (how frequently do the phenomena occur).
The only fair test of coverage in this sense is a test on a sample of data simi-
lar to that to be used in the application, but not seen during development.

5.2 Black Box versus Glass Box Evaiuation

Evaluadng components of a system is important in system development,
although not necessarily useful for comparing various systems, unless the
systems evaluated are very similar, which is not often the case. Since the
mouvapon for evaluating components of 2 system is for internal testing.
there is less need to reach wide-spread agreement in the community on the
measurement methodology. System-intemal measures can be used to evalu-
ate component technologies as a function of their design parameters; for
example, recognition accuracCy can be tested as a function of syntactic and
phanological perplexity, and parser performance can be measured as a func-
ton of the accuracy of the word input. In addition, these measures are useful
in assessing the amount of progress being made, and how changes in vanous
components affect each other.

5.3 Quantitative versus Qualitative Evalyation

Qualiative evaluation (for example, do users seem 10 like the system) can be
encouraging, but more convincing 1o those who cannot observe the system
themselves are quantitative automaied measures. Automation of the mea-
sures is imponant because we want to avoid any possibility of nudging the
dawa wittingly or unwittingly, and of errors arising from fatigue and inatten-
uon. Further, if the process is automated, we can observe far more data than
otherwise possible, which is impontant in research on language, where many
units occur infrequently and where the variation across subjects can be large.
For these measures to be meaningful, they shouid be standardized insofar as
possible, and they should be reproducible.

5.4 Collecting Data for Evaluation

1n order to coliect the data we need for evaluating spoken language systems,
we have developed a pnambic sysiem (named after the line in the Wizard of
Oz "pay ho atiention 10 the man behind the curtain™). In this system a sub-
jectis ted to believe that the interaction is taking place with a computer,
when in fact the queries are handied by a ranscriber wizard (who transcribes
the speech and sends it 10 the subject’s screen) and a database wizard who is
supplied with a tool for rapid access 10 the on-line database in order to
respond 10 the queries. The wizard is not allowed to perform complex tasks.
The wizard may only retrieve data from the database or send one of 2 smal}
number of other responses, such as “your query requires reasoning beyond
the capabiliies of the system.” In general, the guidelines for the wizard are
10 handle requests that the wizard understands and the database can answer.
The data must be analyzed afterwards 10 assess whether or not the wizard did
the right thing.

$.5 Transcription Conventions

The session transcriptions, i.¢., the sentences displayed to the subject, repre-
sent the subject’s speech in a natural English text style. in order to perform
automatc evaluation, we must agree on conventons for representing what
the subject said, and we must implement procedures to ensure that these con-
ventions are consistently used.
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5.6 Canonical Answers and Sconng.

Canonical answers are, in general, the answer retumed under the wizard's
conwol. These answers will have 1o be cleaned up if the wizard makes an
errar, or if the answer given by the wizard was the (Cooperative) context-
dependent answer, which may differ from a context-independent answer, if it
exists. Scoring is accomplished using standardized software, and conven-
uons for inputs and outputs.

The process of coming to agreement on conventions for evaluation of spo-
ken language systems, and implementing such procedures is difficu!t and
ume-consuming. However, the rewards of an automatic, common mecha-
nism for system evaluation is worth the effort, and we believe that spoken
language system development will benefit enormously from this effore

6.0 Summary

In sum, workstations equipped with spoken language systems have the
potential to increase user efficiency in interactive problem-solving. Nawral
language input aliows the user 10 formulate more complex quesuons and
commands more efficiently and more natyrally. Spoken natural language can
increase user efiiciency. can reduce cognitive load, and ¢2-. provide an alter-
nate input modality to improve system robustness. SRI's research sugpests
that successful development of SLS technology requires an appreciation of
the new challenges associated wit. acceptance of user input that cannot be
defined beforchand. Furthermore, system integration design decisions can
affect how well the system can deal with these new input forms.
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ABSTRACT

The DARPA Spoken Language effort has profited greatly from its
emphasis on tasks and common evaluation metrics. Common,
standardized evaluation procedures have helped the community to
focus research effort, to measure progress, and to encourage com-
munication among participating sites. The task and tho evalustion
metrics, however, must be consistent with the goals of the Spoken
Language program, namely interactive problem solving. Our eval-
uation methods have evolved with the technology, moving from
evaluation of read speech from a fixed corpus through evalustion
of isolated canned sentences to evaluation of spontaneous speech
in context in a canned corpus. A key component missed in current
evaluations is the role of subject interaction with the system.
Because of the great variability across subjects, however, it is nec-
essary to use either g large number of subjects or a within-subjest
design. This paper proposes a within-subject design comparing
the results of a software-sharing exercise carried out jointly by
MIT and SRI.

1. INTRODUCTION

The use of a common task and a common set of evaluation
metrics has been a comerstone of DARPA-funded research
in speech and spoken language systems. This approach
allows researchers to evaluate and compare alternative
techniques and to leam from each other’s successes and
failures. The choice of metrics for evaluation is a crucial
component of the research program, since thete will be
strong pressure to make improvements with respect to the
metric used. Therefore, we must select metrics carefully if
they are to be relevant both to our research goals and to
transition of the technology from the laboratory into appli-
cations.

The program goal of the Spoken Language Systems (SLS)
effort is to support human-computer interactive problem
solving. The DARPA SLS community has made significant
progress toward this goal, and the development of appropri-
ate evaluation metrics has played a key role in this efforn.
We have moved from evaluation of closed vocabulary, read
speech (resource management) for speech recognition eval-
uation to open vocabulary for spontaneous speech (ATIS).

In June 1990, the first SLS dry run evaluated only tran-
scribed spoken input for sentences that could be interpreted
independent of context. At the DARPA workshop in Febru-
ary 1991, researchers reported on speech recogntion. spo-
ken language understanding, and natural language
understanding results for context-independent sentences
and also for pairs of context-setting + context-dependent
sentences. At the present workshop, we witness another
major step: we are evaluating systems on speech, spoken
language and natural language for all evaluable utterances
within entire dialogues, requinng that systems handle each
sentence in its dialogue context. with no externally sup-
plied context classification information.

2. EVALUATION METHODOLOGY:
WHERE ARE WE?

The current measures have been and will continue to be
important in measuring progress., but they do not assess the
interactive component of the system. a component that will
play a cnitical role in future systems deployed in real tasks.
Indeed, some current metrics may penalize systems that
attempt to be co-operative (for example, use of the
welghted error, see below, and the maximal answer con-
straints). We propose a complementary evaluation para-
digm that makes possibie the evaluation of interactive
systems. In this section we outline the current state of eval-
uation methodology and point out some shortcomings.

The current evaluation procedure 1s fully automated. using
a canned corpus as input and a set of canonical database
tuples as output reference answers. The evaluation mea-
sures the recognition and understanding components of a
spoken language system, based on the number of correctly
answered. incorrectly answered, and unanswered quenes.
These are then incorporated into a single number to pro-
duce a weighted error: percent “No-Answer” plus twice the
percent “Incorrect” (this formulation is equivalent to 1
minus the “Score”, where the “Score” is the percent “Cor-
rect” minus the percent “Incorrect).”
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To date. evaluation has focused on only half of the user-to-
system-to-user loop: these measures evaluate how well the
system understands what the user says, but they ignore how
felicitously the system answers the user. The use of a
canned corpus effectively precludes any attempt by the sys-
tem to direct the course of the conversation, including elic-
iting missing infonnation from the subject, carrying on a
clanfication dialogue (for ambiguous or misunderstood
input) or providing partial answers. For example, suppose
the user says “I want to go to Dalias next Sunday”. There
are a number of ways for the system to respond:

1. Ask for a place of departure:
SYSTEM: “Where are you leaving from?”
2.Inform the user that the information is incomplete:

SYSTEM.: “Please give both a place of depar-
ture and a destination.”

3. Show all flights arriving in Dallas from anywhere:

SYSTEM. “Here are the flights arriving in Dallas
from anywhere.”

4.Refuse to answer the question, with some diagnostic
message:

SYSTEM: “I'm sorry, there are too many flights
to show; please give me more information.”

5.Refuse to answer the question:
SYSTEM: “Please rephrase your question.”

Obviously some of these responses seem more helpful than
others (although it is not immediately clear that there is a
“best” response). In any case, what the user says next
depends on which strategy the system adopts. For example,
if the first strategy is chosen, where the system asks the user
to specify a departure city, the user might well respond
“Boston.” This makes sense as an answer to System
Response 1, but is not easily interpreted if the system uses
System Response 2: “Please give both a place of departure
and a destination.” Maintaining coherence in dialogue
depends on what the system says to the user during data
collection. If we continue to use only canned dialogue in
evaluation, then we can choose among ways to evaluate
systems:

1. Canonical Response: All systems must provide the
identical response to each situation,

2. Dialogue Resynchronization: Each system must be
able to process the data collection system’s response,
and resynchronize its state based on what the user
recetved as a response during data collection;

3. Discarding Interactive Dialogue: We throw out of the
common evaluation all interactive (particularly
mxed irutiative) dialogue.

Alternative | was rejected as stifling expenmentation in
buslding interactive systems. Alternanve 2 was described in
{6]. but some sites have felt that it was too burdensome to
implement (multiparty dialogue tracking is not an immedi-
ate requirement for our current spoken language systems).
We are jeft with Alternative 3, disallowing interactive dia-
logue in evaluaton. This is cause for concem. since using
spoken language systems for interactive problem solving is
a shared goal [9]. It also leaves open the possibility that we
inadventently direct our research toward strategies that max-
imize our current measures but may not translate to any
measurable gains when used in real-world applications.

The push tcward a single-number. automated, evaluation
score has encouraged system builders to adopt strategies
that maximize this score. To arrive at a single number, 1t is
necessary to combine night answers, wrong answers. and
“no answers”. The current formula makes a wrong answer
twice as bad as saying “I don’t understand.” As indicated by
Appelt at the October 1991 Spoken Language Intenim Meet-
ing, these strategies may not always be the most helpful to a
user interacting with the system to accomplish a task. For
example, in our current evaluation framework, the answer
in the following interchange could be counted as wrong,
because the information would be insufficiently restricted:

USER: Show me flights from Boston to Dallas leaving
tomorrow on some kind of wide-body airplane

SYSTEM: You want to see flights from Boston to Dal-
las leaving tomorrow, but 1 didn't understand the rest
of the sentence; here are tomorrow’s flights from Bos-
ton to Dallas: (shows the flights but doesn't restrict answer
to wide-bodies).

Similarly, the following interchange would typically be
scored correct:

USER: Show me the flights to Boston amving before 7 am.

SYSTEM: Here are the flights from anywhere to Bos-
ton arriving before 7 a.m.: (shows all flights to Boston
from anywhere arriving before 7 am.).

Meanwhile the following interaction counts as “unevalu-
able” because the system takes the initiative, providing a
(possibly 1rreproducible) context necessary to interpret the
user’s next input:

USER: Show me the flights to Boston armiving before 7 a.m.
SYSTEM: Where are you departing from?
USER: Dallas

SYSTEM: Here are the flights to Boston from Dallas
arnving before 7 a.m.:
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To move this technology toward realistic applications, we
need to focus on building useful systems. This requires that
we explore trade-offs between guessing, partial answers,
reporting lack of understanding, and having a clarification
dialogue with the user. We also need to explore different
styles of interaction between system and user. In addition,
most aspects of the system interface (particularly, the form
of the output) are not being assessed at all using current
metrics (e.g., display of information, presence or absence of
spoken output, mixed initiative strategies). We need to
develop compiementary evaluation techniques that allow us
to make progress and measure performance on interactive
systems, rather than confining ourselves to a metric that
may penahize cooperativeness. Further, we need a sanity
check on our measures 10 reassure ourselves that gains we
make according to the measures will translate to gains in
application areas. The time is right for this next step, now
that many sites have real-time spoken language systems.

3. METHODS

We have argued that interactive systems cannot be evalu-
ated solely on canned input; live subjects are required.
However, live subjects can introduce uncontrolled variabil-
ity across users which can make interpretation of results
difficult. To address this concem, we propose a within-sub-
Ject design, in which each subject solves a scenario using
each system to be compared, and the scenario order and
system order are counterbalanced. However, the within-
subject design requires that each subject have access to the
systems to be compared, which means that the systems
under test must all be running in one place at one time {or
else that subjects must be shipped to the sites where the sys-
tems reside. which introduces a significant time delay).
Given the goal of deployable software, we chose to ship the
software rather than the users, but this raises many infra-
structure 1ssues, such as software portability and moduiar-
ity. and use of common hardware and software.

Our onginal plan was to test across three systems: the MIT
system, the SRI system, and a hybnd SRI-speech/MIT-NL
system. SRI would compare the SRI and SRI-MIT hybrid
systems; MIT would compare the MIT and SRI-MIT
hybnds. The first stumbling block was the need to license
each system at the other site; this took some time. but was
eventually resolved. The next stumbling block was use of
site-specific hardware and software. The SRI system used
D/A hardware that was not available at MIT. Conversely,
the MIT system required a Lucid Lisp license, which was
not immediately available to the SRI group. Further,
research software typically does not have the documenta-
tion, support. and portability needed for rapid and efficient
exchange. Eventually, the expenment was pared down to
comparing the SRI system and the SRI/MIT hybrid system
at SRI. These infrastructure issues have added considerable
overhead to the expeniment.

The SRI SLS empioys the DECIPHER" speech recogni-
tion system (4] senally connected to SRI's Template
Matcher system {7.1]. The pruning threshoid of the recog-
nizer was tuned so that system response time was about 2.5
times utterance duration. Ths strategy had the side-effect of
pruning out more hypotheses than in the comparable bench-
mark system. and a higher word error rate was observed as a
consequence. The system accesses the relational version of
the Official Airline Guide database (implemented in Pro-
log), formats the answer and displays it on the screen. The
user interface for this system is described in [16]. This sys-
tem, referred to as the SRI SLS, will be compared to the
hybnd SRI/MIT SLS. The hybnd system employs the iden-
tical version of the DECIPHER recognizer, set at the same
pruning threshold. All other aspects of the system differ. In
the SRI/MIT hybrid system, the DECIPHER recogmition
output is connected to MIT’s TINA [15] natural-language
understanding system and then to MIT software for data-
base access. response formatting. and display. Thus. the
experiment proposed here compares SRI’s natural language
(NL) understanding and response generation with the same
components from MIT. We made no attempt 10 separate the
contribution of the NL components from those of the inter-
face and display. since the point of this expenment was to
debug the methodology; we simply cut the MIT system at
the point of easiest separation. Below, we describe those
factors that were held constant in the experiment and the
measures to be used on the resulting data.

3.1. Subjects, Scenarios, Instructions

Data collection will proceed as described in Shriberg et al.
1992 [16] with the following exceptions: (1) updated ver-
sions of the SRI Template Matcher and recognizer will be
used: (2) subjects will use a new data cotlecuon facility (the
room is smaller and has no window but is acoustically simi-
lar to the room used previously); (3) the scenanios to be
solved have unique solutions; (4) the debriefing question-
naire will be 2 merged version of the questions used on
debriefing questionnaires at SRI and at MIT 1n separate
expentments; and (5) each subject will solve two scenarios.
one using the SRI SLS and one using the SRI/MIT hybnd
SLS. Changes from our previous data collection efforts are
irrelevant as all comparisons will be made within the exper-
imental paradigm and conditions described here.

MIT designed and tested two scenanos that were selected
for this experiment:

SCENARIO A. Find a flight from Phuladelphia to Dallas
that makes a stop in Atlanta. The flight should serve break-
fast. Find out what type of aircraft is used on the flight to
Dallas. Information requested: aircraft type.

SCENARIO B. Find a flight from Atlanta to Baltimore. The
flight should be on a Boeing 757 and amve around 7:00
p.m. ldentify the flight (by number) and what meal is served
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on the flight. Information requested: flight number, meal
type. .

We will counterbalance the two scenarios and the two sys-
tems by having one quarter of the subjects participate in
each of four conditions:

1.Scenario A on SRI SLS, then Scenario B on SRl/
MIT hybnd SLS

2. Scenario A on SRI/MIT hybrid SLS. then Scenario B
on SRI SLS

3.Scenanio B on SRI SLS, then Scenario A on SRI/
MIT hybnd SLS and

4. Scenario B on SRI/MIT hybrid SL.S. then Scenario A
on SRI SLS).

A total of 12 subjects will be used, 3 in each of the above
conditions. After subjects complete the two scenarios, one
on each of the two systems, they will complete a debriefing
questionnaire whose answers will be used in the data analy-
sis.

3.2. Measures

In this initial experiment, we will examine several measures
in an attempt to find those most appropriate for our goals.
One measure for commercial applications is the number of
units sold, or the number of dollars of profit Most develop-
ment efforts, however, cannot wait that long to measure
success or progress. Further, to generalize to other condi-
tions, we need to gain insight into why some systems might
be better than others. We therefore chose to build on experi-
ments described in {12] and to investigate the relations
among several measures, inciuding:

» User satisfaction. Subjects will be asked to assess
their satisfaction =ith sach <vstem (using a scale of
1-5) with respect to the scenario solution they found,
the speed of the system. their ability to get the infor-
mation they wanted, the ease of leaming to use the
system, comparison with looking up information in a
book. etc. There will also be some open-ended ques-
tions in the debriefing questionnaire 1o atlow sub-
jects to provide feedback in areas we may not have
considered.

» Correctness of answer. Was the answer retrieved
from the database correct? This measure involves
examination of the response and assessment of cor-
rectness. As with the annotation procedures [10].
some subjective judgment is involved, but these
decisions can be made fairly reliably (see {12] for a
discussion on interevaluator agreement using log file
evaluation). A system with a higher percentage of

correct answers may be viewed as “better ” However,
other factors may well be mvolved that correctness
does not measure. A correlation of correctness with
user satisfaction will be a stronger indication of the
usefulness of this measure. Lack of correlation might
reveal an interaction with other imponant factors.

* Time to complete task, as measured from the first
push-to-talk until the user’s last system action. Once
task and subject are controlled. as in the current
design, making this measurement becomes meanung-
ful. A system which results in faster completion
times may be preferred, although 1t is again impor-
tant to assess the correlation of time to completion
with user satisfaction.

« User waiting time, as measured between the end of
the first query and the appearance of the response.
Faster recognition has been shown to be more saus-
fying [16] and may correlate with overall user sats-
facton.

* User response time, as measured between the appear-
ance of the previous response and the push-to-talk
for the next answer. This time may include the ume
the user needs to formulate a question su:table for the
system to answer as well as the ume 1t takes the user
to assimilate the matenal displayed on the screen. In
any case, user response ame as defined here 15 dis-
tinct from waiting time, and is a readily measurable
component of time to completion.

* Recognition word error rate for each scenano. Pre-
sumably higher accuracy will result in more user sat-
isfaction, and these measures will also allow us to0
make companson with benchmark systems operaung
at different error rates.

* Frequency and type of diagnostic error messages.
Systems will typically display some kind of message
when it has failed to understand the subject. These
can be automatically logged and tabulated.

4. SUMMARY AND DISCUSSION

As pointed out by LTC Mettala in his remarks at this meet-
ing, we nieed to know more than the results of our current
benchmark evaluations. We need to know how changes in
these benchmarks will change the suitability of a given
technology for a given application. We need to know how
our benchmarks correlate with user sansfaction and user
efficiency. In a sense. we need to evaluate our evaluation
measures.
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At this writing, the MIT software has been transferred to
SRI. and data collection is about to begin. We find that what
began as an exercise 1n evaluation has become an exercise
in software sharing. We do not want to deny the importance
of software sharing and its role in strengthening ponability.
However, the difficulties involved (legal and other paper-
work. acquisition of software and/or hardware, extensive
interaction between the two sites) are costly enough that we
believe we should also consider mechanisms that achieve
our goals without requiring exchange of complete systems.
Two such possibilities are described below.

Existing logfiles, including standard transcriptions. could
be presented to a panel of evaluators for judgments of the
appropriateness of individual answers and of the interaction
as a whole. In a sense, then, the evaluators would simulate
different users going through the same problem solving
experience as the subject who generated the logfile. Cross-
site vanability of subjects used for this procedure could be
somewhat controlled by specifying characteristics of these
subjects (first ime users, 2 hours of experience, daily com-
puter user, etc.). This approach has several important
advantages:

« It allows a much richer set of interactive strategies
than our custent metnics can assess, which can spur
research in the direction of the stated program goals.

+ It provides an opportunity to assess and improve the
correlation of our current metrics with measures that
are closer 1o the views of consumers of the technol-
ogy. which should yield greater predictive power in
matching a given technology to a given application.

* It provides a sanity check for our current evaluation
measures, which could otherwise lead to improved
scores but not necessarily to improved technology.

+» It allows the same scenario-session to be experi-
enced by more than one user, which addresses the
subject-vanability issue.

* It requires no exchange of software or hardware, and
takes advantage of existing data structures currently
required of all data collection sites, which means it is
relatively inexpensive to implement.

The method however does NOT make use of a strictly
within-subject design, i.e., the same subject does not inter-
act with different systems (although the same evaluator
would assess different systems). As a result, the logfile
evaluation may require use of more subjects. or other tech-
niques for addressing the issue of subject variability.

A live evaluation in which sites would bring their respec-
tive systems to a common location for assessment by a
panel of evaluators could provide a means for a within-sub-
Ject design. The solution of having a live test would have
benefits similar to those outlined above for the logfile eval-

uauon, but tn addition subjects could assess the speed of
system response, which the logfile proposal largely 1gnores.
However, it would be more costly to tzansport the systems
and the panel of evaluators than to ship logfiles (a'though
most sites cwretnly bring demonstration systems (0 meet-
ings).

The logfile proposal could be modified to overcome its lim-
ited value in a: essment of timing {at some additional
expense) by the creation of a mechanism that would play
back the logfiles using a standard display mechanism and
based on the time stamps appearing in the logfiles. This
would also open the possibility of having evaluators hear
the speech of the subject, rather than just seeing transcrip-
tions.

The costs involved for the use of such measures is negligi-
ble given the potential benefits. We propose these methods
not as a replacement for the cutrent measures. but rather as
a complement to them and as a reality check on their func-
tion in promoting technological progress.
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1. ABSTRACT

Filled pauses in spontaneous speech preseat problems for models
of speech understanding and automatic speech recognition. A
potentially important cue to their recognition by both humans and
machines is their typically low F0 [9, 7]. The current paper dis-
cusses resulss of a study [10] which sought to determine whether
the FO of filled pauses is relative to. or independent of. the FO of
surrounding lexical material. Clause-internal filled pauses and
preceding peak FQ values for speakers of American and British
English were examined. Higher peaks were found to be systemati-
cally associated with higher filled-pause values within speakers,
supporting the “relative” hypothesis. In modeling this relationship
it was found that a linear model, in which filled-pause FO was
expressed as an invariant (over speakers) proportion of the dis-
tance between the preceding peak FO and a speaker-dependent ter-
minal low FO, produced results nearly identical to those of a two-
parameter model in which the coefficients of peak and terminal
low FQ were allowed to vary freely. Analyses of additional vari-
ables showed the model to be less appropriate for filled pauses
after sentence-initial peaks, but unaffected by temporal variables.
These results suggest that clause-internal filled pauses, while
lower in FQ than words in the message stream, nevertheless pre-
serve information about the local prosodic context. Implications
for psycholinguistics, speech recognition, and linguistic theory are
discussed.

2. INTRODUCTION

Phenomena exhibited in spontaneous speech present new
challenges for researchers in psychology. speech technol-
ogy. and linguistics as the object of study shifts from care-
fully prepared “laboratory speech” to natural conversation.
An important difference between spontaneous speech and
speech that is read or rehearsed is that spontaneous speech
is characterized by relatively high rates of hesitation
pauses. repetitions and reformulations [3]. This paper
examines one of the most common types of hesitation phe-
nomena: the filled pause. usually realized orthographically
” u(‘m" Or ﬁ“’h‘49
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Filled pauses can present problems for models of human
language understanding and automatic speech recognition.
In the case of human perception, what is remarkable is the
extent to which filled pauses are “filtered out” in compre-
bension. Those familiar with the task of ranscribing spon-
taneous speech will note that filled pauses are often missed
in first passes at transcription; laboratory experiments [e.g..
5] have shown that listeners have difficulty locating filled
pauses when monitoring for sentence content. In the case
of speech recognition. filled pauses are problematic in that
they are often misrecognized as words having similar pho-

netic features. such as “a”, “an’ or “and.” or as syllables of
longer words [1. 7. 9].

One source of information that is likely to be important in
the successful perception and processing of spontaneous
speech in general [see. for example. 6] and speech contain-
ing filled pauses in particular, is prosody. Recent work has
contributed to our knowledge of the prosodic features of
filled pauses. Studies of hesitations in a database of human-
computer dialog [4. 11] show that filled pauses tend to
occur in the lower region of a speaker’s F) range and have
a level or falling tone (7], and, more specifically. that their
FO is typically lower than that of both accented and unac-
cented neighboring syllables [9].

For human perception. these findings may provide an
account for the apparent perceptual separation of filled
pauses from the message stream. The low FO of filled
pauses could aid automatic recognizers in distinguishing
filled pauses from real words. In addition. linguists may be
concerned with how to best represent these predictably
low-FO units in prosodic descriptions of spontaneous

speech.

A question relevant to each of these areas concerns the
pature of the relationship between the low FO of filled
pauses and the intonation of surrounding material. There
are three possible relationships: 1) filled pauses may be
produced at an absolute, speaker-specific FO value regard-
less of their position within the sentence: 2) the FO of filled
pauses may vary within speaker, but the variation may be
unpredictable; or 3) the FO of filled pauses for a particular
speaker may be predictable at better than chance, given
knowledge about the prosodic context.




A study previously reported in [10] investigated the rela-
tionship between filled-pause FO and intonationai context:
the current paper discusses resuits of that study in further
detail. Since the question of interest concerned prosodic
context, the relevant filled pauses to examine would be
those that interrupt a prosodic pLrase. as opposed to those
that initiate a speaker’s turn or occur between intonation
phrases. The task of choosing filled pauses that occur
within a prosodic phrase poses difficulties. however, in that:
(1) it would be unclear how to label the data prosodically,
since existing prosodic theories are not tailored to the
description of material surrounding hesitation phenomena;
(2) it is not clear what level of prosodic structure would be
appropriate to use as the relevant unit for “interruption;” (3)
choosing filled pauses on the basis of the prosody of sur-
rounding material is potentially circular in that hesitations
may themselves influence the prosody of that material; and
(4) prosodic labeling requires listening to utterances and is

time-consuming.

The scheme adopted was to study filled pauses that
occurred within a syatactic clause. Filled pauses were con-
sidered to be “‘within-clause” if lexical material preceding
the filled pause was syntactically incomplete, and strongly
predicted continuation of the utterance after the filled
pause. The value of the closest FO peak preceding the filled
pause was used as a measure of prosodic context, and the
initial FO value of the filled pause was used as a measure of
filled-pause FO.

Within-clause filled pauses from speakers of American and
speakers of British English, in two different discourse con-
texts, were examined to evaluate the three alternative
hypotheses. The “absolute™ hypothesis predicted that filled
pauses would occur at a constant, speaker-dependent FO
value regardless of the value of the preceding peak F0. The
“random™ hypothesis predicted that filled-pause FO values
from a particular speaker would vary in a manner uncorre-
lated with preceding peak FO values. The “‘relative” hypoth-
esis predicted some form of systematic relationship
between the peak and corresponding filled-pause FO values.

3. METHOD

3.1. Subjects

Two quite different sets of data were analyzed. The first was
a set of 120 clause-internal filled pauses from digitized
utterances from 29 speakers (14 male. 15 female) of Ameri-
can English making air travel plans by speaking to a com-
puter. The multi-site database is described in detail in [4].
The majority of examples came from “Wizard-of-Oz" sys-
tems, in which a human interpreted and responded to
requests and thus “recognition” was perfect; a small aum-
ber came from interaction with a Spoken Language System
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[11]. The number of clause-internal filled pauses per
speaker used in the analyses ranged from 2 to 13: 82 of the
examples came from 12 speakers (6 male. 6 female) having
5 or more examples each.

The second set consisted of 87 filled pauses taken from a
corpus of six dialogues recorded digitaily at the Department
of Linguistics at the University of Edinburgh. Dialogues
involved the second author and a colleague or acquaintance;
they were natural, spontaneous conversations on various
topics, with no set task. The subjects were 3 male and 3
female speakers of British English. without srong regionai
accents, who were unaware of the purpose of recording the
conversations. The aumber of clause-internal filled pauses
per speaker used in the analyses ranged from 6 to 28.

3.2. Filled Pauses

The goal of the study was t0 examine filled pauses that were
likely to interrupt a prosodic phrase; however, because it
would have been difficuit and time-consuming to label the
data sets prosodically in order to select the desired filled
pauses, a method based largely on syntax was used. In gen-
eral, the filled pauses selected for analysis were those that
directly followed lexical material that would have been syw-
tactically incomplete if the vtterance had not continued after
the filled pause. It was felt that this would be an efficient,
straightforward, and easy-to-replicate method for capturing
many of the filled pauses that did interrupt prosodic phrases.
while avoiding the complex and time-coasuming task of
prosodic labeling. Some exampies from the American data
set are listed in Table 1.

Table 1: Examples of Clause-Internal Filled Pauses
Incomplete “L::fn ¢ Example
NP N ..the lowest {uh] fare...
VP (trans) NP ...book [uh] the flight..
PP NP ...leave at {um] noon...
AUX S Does {uh] Delta fly...

The researchers tried to determine whether or not 3 listener
would feel it was possible that the speaker could have ended
an utterance before the filled pause. based on a transcription
alone, but taking semantic and pragmatic information into
account. For example, filled pauses in utterances such as:

Show me flights flying [uh] from Boston.




in which material before the filled pause is not necessarily
syntactically incomplete, but which would seem incomplete
to a listener given the discourse context, were included in
the analyses.

Conversely, some utterances which could be viewed as
meeting the syntactic expectancy requirement were not
included in the analyses. These were cases in which the
only item preceding the filled pause in the same clause was
a conjunction such as “and” or “but.,” a lexical filler such as
“well” or “okay,” or another filled pause. Such cases were
excluded because of the higher likelihood of a prosodic
boundary immediately preceding the filled pause.

3.3. Apparatus

The digitized waveforms were sampled at § or 16 kHz and
all waveforms and pitch tracks were examined using the
Entropic ESPS/Waves+ software on a Sun 4 workstaton.

3.4. Procedure

The American and British data were coded independently
by the first and second authors, respectively. For each
within-clause filled pause having reliable pitch tracks. the
researcher recorded five FO values, four measures of dura-
tion. and values for four additional variables.

The FO of each filled pause was measured at both the begin-
ning and end of the filled pause. These values describe the
FO of filled pauses well, since most fall fairly linearly. Anal-
yses in the present work used the initial filled-pause FQ as a
measure of filled-pause FO. FO was also recorded at the FO
peaks most closely preceding and following the filled
pause: results reported bere used only the preceding peak as
a measure of prosodic coatext. Alternative measures of
context (for example topline, or preceding low accents)
could also be used, but could be more difficult to measure
and locate than FO peaks. Peak values were restricted to
occur on words within the clause containing the filled
pause. In most cases, the peak was marked on a syllabie
perceived to be accented: in a few cases no accented sylla-
ble was available and the highest preceding FO value was
used.

A fifth FO value. which will be referred to as the “terminal
low F0.” was measured after final lowering in a manner
similar to that described in [2]; i.e. for utterances containing
a rerminal fall. FO was measured at the lowest point in the
fall, disregarding regions associated with errors in pitch
tracking or vocal fry. The purpose of this measure was to
provide a single, stable, speaker-dependent FO value for
each speaker. The underlying assumption in the present
work was that this value should correspond to a speaker’s
lowest possible FO. as opposed to the lowest FO realized in
any particular utterance, since the former would be the
more stable value given the inherently positively skewed

distribution of terminal low FO values. Therefore, terminal
low F0 values were obtained for all utterances for a particu-
lar speaker that contained a terminal fall. The lowest of
these values was then used as the estimate of the speaker’s
terminal low FO for all speech tokens from that speaker in
the analyses. Care was taken to assure that the lowest termi-
nal F0 value did not appear 1o be an outlier when compared
with the other terminal FO values obtained for the same

speaker.

Four measures of dura.ion were recorded, including the
duration of the filled pause. that of preceding and following
silent hesitation pauses (if any). and that of *he time (and
also the number of syliables) between the preceding peak
and the beginning of the filled pause.

Values for additional variables of interest were also
recorded. including the sex of the speaker. whether or not
the filled pause preceded a repetition. repair. or fresh start.
whather or not the preceding peak was marked on a sen-
tence-initial accent. and whether the filled pause was “um”
or “‘uh.”

4. RESULTS

Figures 1-4 show data for a male or female speaker from
each of the daia sets (American and British). Time-normal-
tzed FO values are <hown for the preceding peak FO. initial
filled-pause FO, final Slied-pause FO, and “sllowing peak FO
in multiple examples of filled pauses for the particular
speaker. Each speaker’s estimated terminal low FQ is also
indicated.

4.1. Testing the Hypotheses: Sign Test

The first thing t0 note about the plots is that. in general, the
drop to the filled pause from the preceding peak scales with
the peak values. so that higher peaks tend to have higher
following filled pauses. This simple assumption was tested
using data from all 35 speakers. The highest and lowest pre-
ceding peak FO values over all examples from a parucular
speaker were extracted and the associated filled pause val-
ues compared in a Sign test. In 34/35 cases, the higher pre-
ceding peak value was associated with a higher filled pause
value, p < .0001. This highly significant result is consistent
with the relative hypothesis and inconsistent with the abso-
lute and random hypotheses.

4.2. Modeling the Relationship

A second observation about Figs. 14 is that the:e appears to
be a lower bound of FO: filled pauses de nu. seem to go
below the terminal FO. This suggests that fille-!-pause F0
cannot be expressed as a sumpie subtractive function of
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Figure 2: Peak and Filled-Pause FO for British Male

peak FO. A third observation is that there seems to be a
compressive effect for peaks closer to the terminal FO, with
iower peaks producing less of a drop to the filled pause than
fugher ones. This observauon suggests that filled-pause FO
cannot be expressed as a simple multiplicauve funcuon of
peak FO. since such a function would predict parallel
curves. Exceptions to thus trend are the filled pauses follow-
ing the very highest peak examples in Figs. 1, 2. and 4.
whuch do not drop as far as expected. However. these exam-
ples form a spec.al class; they correspond to filled pauses
‘ollowing peaks marked on sentence-initial accented sylla-
Sles whuch. as discussed later, appear to behave differently
‘rom other clause-intemnal filled pauses.
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Figure 3: Peak and Filled-Pause FO for Amencan Female
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Figure 4: Peak and F:lled-Pause FO for Bntish temale

Based on these observations, we proposed a simple linear
model. in which filled-pause FO (FO fp) s the FO value
occurnng at a fixed proporuon of the distance between the
peak FO (FO peak) and the terminal iow FO (FO nun):

FOfpzr(FO;)eak'FOmin)+F()min

Thus 1s a single-parameter model. since the coefficients of
peak FO and terminal jow FO are both determined by r.

We determined the value of r emptrically for each filled
pause token from the set of Amencan and Bnush speakers
with five or more examples each {18 subjects. 169 filled

A-150




pauses.) Means ror tokens broken down by Amencan/Bni-
tsit and male/female are shown 1n Table 2.

Table 2: Values of ¢

B H '
. ¥ of #of | Mean | sd.of |
Subject ! {
; speakers : tokens | r i r '
_ Amencan i i :
maie 6, 3% | % | 214
female 6 Loa3 ] 626 1 158
Bntish i .
male 3 {55 1 807 : 240 |
female 3 Y] : 636 242

Because results for the Amencan and British data were
remarkably sinujar. data were pooled for all further analy-
ses. Although the value of r appears to be shghtly tugher for
women tn both groups. the differences are nonsignificant
{as can be seen by comparing them to the magmtude of the
standard deviations.)

A iinear regression with the constant term suppressed. per-
formed using the raw data from subjects represented 1n
Table 2. and using the mean r determined over the entire set
(C.62). y1elded a standard error in prediction of 15.41 Hz. A
companson of this model to two other linear models 1s
snown 1n Table 3. [nvestigauon of higher-order medels was
not warranted given the lack of evidence for a nonlinear
relationship, and the potential danger of over-fitung the
small data set at hand. The proposed model was clearly bet-
ter than one in whuch only the peak was used to predict the
filled pause FO. It was also remarkably close mn prediction
accuracy to results produced by a two-parameter model
which allowed the coefficients of peak and terminal low FO
to vary freely

Table 3: Comparnison of Models

. # of ‘ RMS error |

Variables Parameters ; (Ho) i

peak. terminal low FO ! ' 1541
peak ﬁ i 16.58 '
peak. terminal low FO 2 15.25 i

4.3. Optimal Reference F0

An 1ssue addressed was whether, given the proposed model.
the eshimated terminal low FO values used corresponded to
the opumal reference FO values for prediction. ideally.
rezressions solving for the optimal r and constant for each
speaker would allow for comparison of these results to

those cbtamned using the observed ernungdi 0w vajues,
however. 10 be mearungful such analyses require micre Jata
per speaker Nevertheless, analyses performed tor a subset
{N=0) of the |8 subjects who had the iargest numbers of
examples revealed that in each case the opumai retetence
FO was rugher than the observed terminal low FG. Theretore
a number of modificauons of the observed values in the 18-
speaker data set were computed. For each modificauon. 1
was redetermined using the new termunal low values. and
filled pauses were predicted using the new, overail average r
and new low FO values. It was found that the mimimum
standard error {1516 Hz. as opposed 10 {5 4} Hz for the
onginal termunal low values) was produced when observed

s

termunal iow values were increased by roughly (%

4.4. Effect of Duration

There was no correiation between the time or the mumnber of
svllables from the peak ¢ the flled pause and the drop size
As shown in Figure 5. the drop in FO from :he preceding
peak tc the filled pause did not seem to depend on the
amount of ume elapsed between these two points
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Figure 3: Effect of Time from Peak on FO Drop

In add:uion. there did not seem to te any reiationship
between the durauon of the filled pause .tself and the size of
the fall in FO over the course of the filled pause. as shown
Figure &
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4.5. Effect of Additional Variables

Results of regressions performed using the observed termi-
nal iow FO values and selecting independently for values of
additonal vanables are shown in Table 4.

Table 4: Effect of Additional Vanables
i
Data in Analysis r:rhrg ¥ of
(Hz) tokens

| all dara 1541 | 169
male speaker 12.36 94

! fernale speaker 18.42 75

, peak on sentence-initial accent 30.30 26

' peak not on sentence-initial accent 10.90 143
no other disfluency present 14.36 141
filled pause precedes repetition 25.90 11
filled pause precedes replacement 13.09 7 h
filled pause precedes fresh start 17.90 9
filled pause 1s “um™ 15.29 86
filled pause is "uh” 15.20 83

As can be seen, the factor most influencing predicuon accu-
racy was whether or not the preceding peak was marked on
a sentence-intial accented syllable. Although conclusions
cannot be drawn given the small number of tokens of this
type. it 1s worth noting that the error in prediction was
always in the same direction. with the actual filled pause
occurnng at a higher FO value than predicted by the medel.-
Tokens not 1involving disfluencies had a lower standard
error than that observed overall;. however, results for the
different types of disfluencies were tnconclusive due to
small sample size. Prediction error was not affected by
whether the filled pause was “um” or *uh” (although “um”
tokens were significantly longer 1n duration than “uh”
tokens, and 1t should be borne in mind that the present
model predicted only the itial FO of the filled pause.} Pre-
dicnion accuracy was also not affected by the sex of the
speaker; that females had a higher standard error than males
was expected given the roughly 50% higher ternunal low
FO values for the females.

5. DISCUSSION

5.1. Evaluation of Hypotheses

Two different sets of spontaneous speech data were exam-
Ined to explore the relationshup between the FO of clause-
intemal filled pauses and their surrounding context. Resuits
show that the intial FO of clause-intemal filled pauses
scales with the FO of preceding peaks. strongly supporung
the “relative” hypothests.

5.2. Modeling the relationship

Inspection of data from individual subjects revealed that in
addiuon to the scaling of filled pause FO with preceding
peak FO. there was also a iower bound of filled-pause FO
vaiues. and a compressive effect on the size of the drop
from the preceding peak to the filled pause as peaks
approached the lower portion of a speaker’s range.

A mode! of filled-pause FO was proposed to reflect these
observations. The model was not necessarily intended to
have any thecretical interpretation. but rather simply to pre-
dict the value of filled-pause F) using other accessible val-
ues of FO. Filled-pause FQ was expressed as a function of
three values: (1) a speaker-dependent fixed temunal low FO
value (representing the speaker). (2) the value of the pre-
ceding peak FO (representing the particular prosodic con-
text): and (3) a fixed. speaker-independent scaling factor, r
(to express the relationship between the two previous values
and filled-pause F0). This 15 an exiremely constrained
model. with only one free parameter (r). In addition. the
constant term in the model corresponds to a speaker’s
empincally measured terminal low FO. as opposed to some
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FO value unrelated to prosodic phenomena (for example
one outside the speaker’s range). Clearly, the current model
could also be rewritten to be expressed using coordinates
related to a different model (for example. a declination
model); the present model is at least as parsimonious as any
alternative model in which the functions rewriting peak and
terminal low FO in terms of other variables are linear.

One certainly cannot draw conclusions about the appropri-
ateness of models based on examination of the limited set
of data used in the present study. Nevertheless, it is impres-
sive how well the proposed model was able to predict the
data. Of possible linear models (there was no evidence for a
nonlinear relationship when data from individual subjects
were examined) the present mode!l performed exwemely
well, producing results only very slightly less accurate than
a linear model with an additional parameter (in which the
coefficients of peak and terminal low FQ were allowed to
vary freely.) Real evidence in support of a model such as
the present one, however. will probably have to come from
comparison of r in the present model to scaling factors pro-
posed in studies of other prosodic phenomena, for example
low-tone scaling or the scaling of parentheticals.

5.3. Values of r

It was found that the average value of the parameter r,
which expresses the proportion of the distance from termi-
nal low FQ to peak FO at which filled-pause F0 occurs, did
not differ across the American and British data sets. This
suggests that the intonation of ciause-inteinal filled pauses.
at least as measured by the relationship between preceding
peak FO and initial filled-pause F0, may be independeant of
factors such as dialect and discourse setting. Mean r values
also did not differ across sex. Since speaker sex is highly
correlated with the terminal low FO, this lack of a difference
in r between sexes is consistent with the appropriateness of
a linear model.

5.4. Optimal Reference F0

The value of terminal low FO, a speaker-dependent variable
corresponding to the lowest observed FO value produced
after a terminal fall, was found to be slightly lower than the
value which optimized prediction. The overall standard
error over the data set was slightly decreased when the
value of terminal low FO was raised by 10% for each
speaker. A larger data set. with more tokens per speaker. is
needed in order to further investigate this finding; it sug-
gests, however, that the value used to scale pitch over the
course of an utterance is higher than the FO measured after
final lowering. This is consistent with proposals in the liter-
arure [e.g.. 8]. aithough it does not distinguish between a
declination model and one in which FO falls abruptly at the
end of an utterance. It should be noted that the decision to
use the lowest observed terminal low F0, as opposed to
other possible values (for example. the mean of all observa-

tions) was made because the a:m was to get a stable esti-
mate for each speaker, given a positively skewed
distribution of low FO values. Using values such as the
mean would therefore be inappropriate. That s, by using
mean low F0. one cannot improve results in a principled
way. whereas by using a stable estumate such as minimum
low FO (assuming however that there are enough observa-
tions available to adequately estimate this value). one can
examine the relationship between minimum low FO and the
FO that optimizes prediction. For exploratory purposes.
however. an analysis using mean low FO values was per-
formed post hoc on the present data set. Results showed a
marked reduction in prediction accuracy. and a distribution
of r values with much higher standard deviations. Neverthe-
less. it is conceivable that an analysis using mean low F0
values on a different set of data could produce better results
than an analysis using minimum FOQ values: such a resuit
would not be meaningful, however. but would rather be due
to the fact that mean low FQ, like optimal reference FO. is
higher than minimum low FO.

5.5. Effect of Duration

Results also suggest that the intonation of filled pauses may
be independent of temporal variables. As shown in Fig. 5.
there was no correlation between the size of the drop in FO
from the preceding peak to the filled pause and the distance
(in time or syllables) between these points; i.e. filled-pause
FO was unrelated to whether or not words and/or silent
pauses intervened between the preceding peak and the filled
pause. Also. rather surprisingly. there was no correlation
between the duration of the filled pause and how far in FO it
fell, as shown in Fig. 6. Most clause-internal filled pauses
have a slight linear fall: the fact that longer filled pauses do
not fall to a lower FO than shoner filled pauses implies that
the longer tokens either start out with a shallower falling
slope, or that they level off in FO once they reach a point
that is ““too low™ for the local prosodic range. It is also pos-
sible that for long hesitations. speakers may stop the filled
pause compietely and use a silent pause when they have
dropped too far. Future work wuil attempt to examine these
issues more closely. These results add further support to the
notion that clause-internal filled pauses are in some sense
“well-formed" since the range of F0 values for a filled
pause is determined by the local prosodic context. In addi-
tion. these findings suggest that prosodic regularities in
filled pauses may be found more in F0 than in duranon mea-
sures. this possibility seems reasonable because hesitations,
by definition. interrupt the temporal course of production

5.6. Effect of Sentence-Initial Peaks

As shown in Table 4, prediction error of the proposed model
was much greater for filled pauses following peaks marked
on sentence-initial accents han for filled pauses elsewbere.
In each case following a sentence-initial peak. the predic-
tion of the model for filled-pause FO was lower than the
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observed value: when this relatively small set of tokens was
removed from the analyses. the overall error in prediction
was reduced substantially. This finding is consistent with
the notion that the FQ of filled pauses preserves information
about the current prosodic context: filled paunses after peaks
corresponding to extra-high sentence-initial accents are
themselves extra-high.

5.7. Implications for Areas of Research

The finding that the FO of filled pauses is relative to pro-
sodic context has implications for models of human speech
perception. automatic speech recognition. and for theoreti-
cal and descriptive studies of prosody.

The low FO of filled pauses may help explain why listeners
have trouble locating them with respect to words in the
message stream.: low FO may aiso contribute to listeners’
ability to filter out filled pauses in comprehension. Experi-
ments designed to test these hypotheses, by using resynthe-
sis to “lift” filled pauses up to the FO of the region of the
lexical material in an utterance. will be conducted in furure
work. These tests predict that raising the FO of filled pauses
will facilitate listeners’ ability to locate them, and also pos-
sibly impair comprehension. The finding that the FO of
filled pauses is relative to prosodic context suggests that
speakers may atterapt to preserve the current prosodic range
when hesitating, possibly to inform the listener that they
intend to continue where they left off, rather than to aban-
don a portion of the utterance preceding the filled pause.
Thus. a question to be pursued in further work is whether
there is a difference between filled pauses that interrupt oth-
erwise fluent clauses, and those that occur at the interrup-
tion point of a repair or before a fresh start, since in the
latter cases the speaker is abandoning previous material.
There were not enough examples of filled pauses in repairs
or fresh starts in the present data set to address this ques-
tion: however preliminary results of additional data suggest
that very brief filled pauses, which fall rapidly in FO0, often
mark a repair (but these are not necessary features for the
marking of a repair), and that an unexpectedly high FOon a
filled pause seems to be a very good indicator of a fresh
start (essentially an FQ “reset” to begin a new utterance
after the filled pause).

Speech recognition systems may be able to take advantage
of predictably low FO in spotting filled pauses. In order to
do so successfully however, at least in the case of filled
pauses within a clause, these systems will need to take into
account the intonation of the local context, rather than using
absolute speaker-specific F0 values. Spoken language sys-
tems may also benefit from knowing more about prosodic
differences between filled pauses in different syntactic
environments. Preliminary analyses suggest that whereas
clause-internal filled pauses nearly always bave a low and
falling FO. filled pauses that occur turn-initiaily or between
sentences often have a higher and level or even slightly ris-
ing FO. Such information should aid attempts to recognize

filled pauses: in addition the recognition of filled pauses
having these different prosodic characteristics could con-
tribute information about sentence structure for natural lan-

guage processing.

As linguists move from the study of read or rehearsed
speech to spontanecus discourse, it should become increas-
ingly important for them to consider the prosody of disflu-
encies. since &8s shown in the present study, some
pbenomena coasidered to be disfluent may exhibit prosodic
regularities. This work also suggests that in the case of
clause-internal filled pauses. FQ. rather than duration. may
be the most important prosodic feature 10 explore. It should
prove useful for linguists to include methods for annotating
disfluencies in systems developed for the prosodic labeling
of spontaneous speech.

6. CONCLUSION

This work has shown that the FO of one type of speech dis-
fluency. the clause-internal filled pause. is related 1o the
intogation of surrounding material in the message stream.
Further work in this area could enhance our knowledge of
the production and processing of spontanecus speech. help
us learn how to apply these findings to aid speech recogni-
tion. and encourage the consideration of hesitations and
other disfluencies in theoreucal and descriptive work on

prosody.
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ABSTRACT

We have analyzed three factors affecting user satisfaction
and system performance using an SLS implemented in the
ATIS domain. We have found that: (1) trade-offs between
speed and accuracy have different implications for user sat-
isfaction; (2) recognition performance improves over time,
at least 1n rart because of a reduction in sentence perplex-
ity; and 3) hyperarticulation increases recognition efrors,
and while instructions can reduce this behavior, they o not
result in improved recognition performance. We conclude
that while users may adapt to some aspects of an SLS, cer-
tain types of user behavior may require technological solu-
tions.

1. INTRODUCTION

Data collection is a critical component of the DARPA Spo-
ken Language Systems (SLS) program. Data are crucial not
only for system training, development and evaluation, but
also for analyses that can provide insight to guide future
research and development. By observing users interacting
with an SLS under different conditions, we can assess
which issues may best be addressed by human factors and
which will require technological solutions. System devel-
opers can benefit from considering not only initial use of an
SLS, but also the experience of a user over time.

Systems based on current technology work best when
speech and language closely resembile the training data
used to develop the system. However, there is considerable
variability in the degree to which the speech and language
of new users match that of the training data. The current
paper examines the importance of this initial match. It is
possible that users whose speech does not conform to the
system may be able to adapt their behavior over time (e.g.,
Stem and Rudnicky [11]). In order to evaluate technology
in terms of the demands of the application, we need to
understand the extent and the nature of such adaptation and
the conditions that affect it. Although system performance
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can be measured in a number of ways, in this paper, we
focus on (1) self-reports of user satisfaction, and (2) recog-
nition performance. Further studies could include addi-
tional measures.

SRI has been collecting data in the air travel planning
domain using a number of different systems (see Bly et al.
{1]; Kowtko and Price [5]). In moving from wizard-based
data collection to the use of SRI’s SLS, we observed
changes in user behavior that were associated with system
errors. Some of these behaviors were adaptive; for exam-
ple, learning to avoid out-of-vocabulary words or unusual
syntax should facilitate successful interaction. Other
behaviors, however, were non-adaptive and could actually
impede the interaction. For example, speaking more loudly
or in a hyperarticulate style may be detrimental to system
performance insofar as these styles differ irom those
observed in training matenal dominated by wizard-medi-
ated data in which system errors are minimal.

It is difficult to predict how well an SLS will need to per-
form in order to be acceptable to users. Both speed and
accuracy are crucial to system acceptability; we have there-
fore collected data using versions of the system that prion-
tize one of these parameters at the expense of the other. The
present study first addresses the issue of user satisfaction
with different levels of system speed and accuracy and then
focuses on an example of an adaptive behavior and another
that is maladaptive. These behaviors represent a subset of
potential factors influencing human-machine interaction.
Because these issues are not restricted to any particular sys-
tem, they should be of general interest to developers of
SLS technology.

In the first study, we compared three points in the speed-
accuracy space for this application: (1) an extremely stow
but very accurate wizard-mediated system (described in
Bly et al. [1]) with a 2-3 minute response time and a mini-
mal error rate; (2) a software version of the DECIPHER
recognizer with a response time of several times real time
and a fairly low word error rate; and (3) a version of the
DECIPHER recognizer implemented in special-purpose
hardwate using older word models, which has a very fast
response time but currently has a higher word error rate.




We compared user satisfaction based on responses to a
post-session questionnaire.

The second study investigated the effect of user expenence
on syntax and word choice. We hypothesized that one way
users might adapt would be to conform to the language
models constraining recognition. We therefore measured
recognition performance in subjects’ first and second sce-
narios, and compared sentence perplexities in order to
determine whether any changes in recognition performance
could be attributed to a change in perplexity.

The third study examined the effect of hyperarticulate
speech on recognition and tested whether instructions to
users could reduce this potentially maladaptive behavior.
We coded each utterance for hyperarticulation and com-
pared recognizer performance for normal and hyperarticu-
laze utterances. We also compared rates of hyperarticulation
for subjects who were either given or not given the instruc-
tions.

2. DATA COLLECTION METHODS

2.1. Subjects

Data from a total of 145 subjects were included in the anal-
yses. Subsets of these data were chosen for inclusion in
each analysis in order to counterbalance for gender and sce-
nario. The majority of subjects were SRI employees
recruited from an advertisement in an internal newsletter; a
small number were students from a nearby university,
employees in a local research corporation, or members of a
velunteer organization. Subjects were native speakers of
nglish, ranged in age from 22 to 7! and had varying
dezrees of experience with travel planning and computers.

2.2. Materials

Fcur different travel-planning scenarios were used. One
er:ailed arranging flights to two cities in three days; a sec-
or.d entailed finding two fares for the price of a first class
fare; a third required coordinating the arrival times of three
fl:zhts from different cities; and a fourth involved weighing
facors such as fares and meals in order to choose between
two flight times. Because the task demands of the scenarios
were different. we controlled for scenario in the analyses.

23. Apparatus

The data were collected using two versions of SRI's SLS
(w1th no human in the loop); the first study also included
da:a collected in a Wizard of Oz setting (Bly et al. [1]). The
basic charactenistics of the DECIPHER speech recognition
ccmponent are described in Murveit et al.[7,9], and the
basic charactenistics of the natural language understanding

component are described in Jackson et al. [4]. Some sub-
jects used the real-time hardware version of the DECIPHER
system (Murveit and Weintraub [8); Weintraub et al. [12]);
others used the software version of the system, which was a
modified version of SRI's benchmark system (as descnbed
in the references above) tuned using the pruring threshold
to improve speed at the cost of introducing a small number
of recognition errors.

SRI’s SLS technology was implemented in the air travel
planning domain, a domain with which many people are
familiar (see Price [10]). The underlying database was a
relatonal version of an 11-city subset of the Official Airline
Guide. Two DARPA/NIST standard microphones were
used: the Sennheiser HMD-410 close-talking microphone
and the Crown PCC-160 table-top microphone. Most data
were collected with two channels; some of the early data
were collected using only the Sennheiser microphone.
When both microphones were used. recognition was based
on the Sennheiser input.

The interface presented the user with a screen showing a
large button labeled “Click Here to Talk.” A mouse click on
this button caused the system to capture speech starting a
half second before the click; the system automatically deter-
mined when the speaker finished speaking based on silence
duration set at a threshold of two seconds. The user could
move to the context of previous questons via mouse clicks.
Once the speech was processed, the screen displayed the
recognized string of words, a “paraphrase” of the system’s
understanding of the request., and. where appropnate, a for-
matted table of data containing the answer to the query. In
cases where the natural language component could not
arrive at a reasonable answer, a message window appeared
displaying one of a small number of error messages. A log
file was automatically created, containing time-stamps
marking eaci action by the user and by the system.

2.4. Procedure

Subjects were seated in a quiet room in front of a color
monitor, and had use of a moise and microphone(s) but no
keyboard. They were given a short demonstration on how to
use the system. Some of the subjects were given additional
instructions explaining that. while they might have a ten-
dency to enunciate more clearly in the face of recogrution
errors, they should try to speak naturally, since the system
was not trained on overenunciated or separated speech.
Once subjects were comfortable with the system, they were
left alone in the room while they solved trave! planning sce-
narios. After they finished as many scenarios as possible
within an hour, they were asked to fill out a questionnaire
and were given a choice of gift certuficate for use at a local
bookstore or a contribution to a charitable institution.




3. EXPERIMENTS

3.1. The Effects of Speed and Accuracy Trade-
offs on User Satisfaction

Since in general, speech understanding systems can trade
accuracy for speed. we first assessed how these parameters
might affect user behavior and acceptance of the system.
The software version of the recognizer was slower than the
hardware version (2.5 compared to 0.42 times the utterance
duration), but was substantially more accurate (with a word
error rate of 16.1% a- compared with 24.8% on the same
sound files).
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1. Were the answers provided quickly enough?
2. Did the system understand your requests the first time?

3.1 focused most of my attention on solving the problems,
rather than trying to make the system understand me.

4. Do you think a person unfamiliar with computers could
use the system easily?

5. Would you prefer this method to looking up the informa-
tion in a book?

Figure 1: User Satisfaction

To assess user satisfaction, we compared questionnaire
responses for 46 subjects who used the hardware, 23 who
used the software, and 46 who used the earlier wizard-
mediated system. Mean responses are shown in Figure 1. In
general, user satisfaction with the speed of the system cor-
related with the response time of the system they used;
when asked, “Were the answers provided quickly enough?”
69.6% of the hardware users responded “Yes.” In contrast,
only 34.8% of the software users and a mere 11.1% of the

wizard-system users gave “Yes” responses, a significant dif-
ference from the hardware result, x> (df=4) = 35.6. p < .001.
Although hardware users were pleased with the speed of the
system; they were less likely than wizard system and soft-
ware users to say they focused their attention on solving the
problem rather than on trying to make the system under-
stand them (33.3% as compared with 61.4% and 56.5%.
respectively), a marginally significant effect, x- (df=4) =
7.8,p<.10.

On several other measures users found the wizard-based
system preferable to either the software or the hardware.
More wizard-system users said that the system usually
understood them the first time (47.8% as compared with
13.0% and 8.7% for the software and hardware users,
respectively), x*(df=4) = 22.5, p < .001. Overall, the wizard
system users were more likely to say the system could be
easily used by a person who was unfamiliar with computers
(78% compared with 43.5% and 35.6% for the software and
hardware, respectively) x° (df=4) = 20.5, p < .001. How-
ever, in terms of general satisfaction, as expressed in
whether the subjects said they would prefer using the sys-
tem to tooking the information up in a book, there was no
significant difference between the groups, with 52.3%,
60.9% and 55.6% “Yes” answers for the three groups
respectively.

Because the hardware system was least satisfying to users
in terms of recognition accuracy, we concluded that the
hardware would provide the greatest potential for user adap-
tation to the system. For this reason, we used the hardware
system to collect data on the effects of user experience and
instructions regarding hyperarticulation.

3.2. Effect of User Experience on Recognition

User experience was evaluated in a within-subjects design,
counterbalanced for scenario, that compared 24 users’ first
and second sessions. As a global measure of adaptation. we
looked at how long 1t took subjects to complete their two
scenanos. Although subjects were not told to solve the sce-
narios as quickly as possibie, they nevertheless took less
time (10.5 compared to 13.0 minutes) to complete their sec-
ond scenarios, F(1,23) = 5.78, p < .05. This difference was
partially but not completely attributable to a lower number
of total utterances in the second scenario.

The users also elicited fewer recognition errors in the sec-
ond scenario. The mean word error rate was 20.4% for the
first scenano but fell to 16.1% for the second, F(1.22) =
5.60, p < .05. However, not all users decreased their recog-
nition error rate. There was a significant interaction between
imfial error rate and change in error rate from the first sce-
nario to the second, ¥(1.22) = 10.98, p < .01. Subjects who
had recognition error rates of 20% or worse in the first sce-
nario (N=11) tended to improve recognition performance,
while subjects who had better initial performance (N=13)
did not (Figure 2). Subjects with initial error rates of 20% or
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higher went from an average of 31.3% errors down to
19.6%, while subjects with initially lower error rates
showed no statistically significant change. For those sub-
jects who did improve recognition performance, the
improvement could only be due to user adaptation, since
the same SLS version was used for both scenarios.
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Figure 2: Recognition accuracy over time.

The improvement in recognition may be due in part to user
adaptation to the language models used. As a measure of
deviation from the system’s language models, we used test-
set perplexity, which was based on the bigram probabilities
of the observed word sequences. As would be expected,
there was a significant, positive average correlation
between utterance word error and perplexity: meanr = .28,
t = 4.55, p < .001. Thus, one way for subjects to improve
recognition accuracy would be to change their language to
conform to that of the system model. Perplexity may there-
fore play a role in the decrease in recognition erTor rates
observed over time for those subjects who had an error rate
of 20% or worse in their first scenario. For this group of
subjects, there was a tendency to produce queries with
lower sentence perplexity in the second scenario (Figure 3).
Using the median as a measure of central tendency (a more
stable measure due to the inherent positive skew of perplex-
ity), we found that the average median sentence perplexity
was 25.3 for the first scenario and 19.4 for the second, a
reliable difference, F(1.10)=7.44, p < .05.

o 35

o)

3 : w=@ High Initial Error
%’. 30 F === Low Initial Error
o |

a.

- 25

S |

2

s 20

® X

=)

E 15k O\O

Q

> >

<40 ' !

Scenario 1 Scenario 2

Figure 3: Median perplexity over time.

In addition to decreasing perplexity, subjects who had initial
error rates of greater than 20% also tended to decrease the
use of out-of-vocabulary words in the second scenario,
whereas subjects who had lower error rates did not, a signif-
icant interaction, F(1,22) = 6.10, p < .05. Overall, however,
the use of out-of-vocabulary words was rare.

These findings indicate that at least to some degree, subjects
adapted to the language models of the system and, in doing
so, managed to improve the recognizer’s performance.
Quite possibly, subjects were finding ways to phrase their
queries that produced successful answers, and then repro-
ducing these phrases in subsequent queries. In future work,
further analyses (for example, looking at dialogue) will
address this issue in greater detail.

3.3. Effect of Instructions on Speech Style

Another potential source of recognition errors arises when
the speech of the user deviates from the acoustic models of
the system. Since the vast majority of the data used to train
the DECIPHER recognizer came from wizard-mediated
data collection [6], where recognition performance was
nearly perfect, examples of “frustrated” speech were rare. In
human-human interaction, when an addressee (such as a
foreigner) has difficulty understanding, speakers change
their speech style to enunciate more clearly than usual {(Fei-
guson [3]). We suspected that a similar effect might occur
for people speaking to a machine that displayed feedback
showing less than perfect understanding. We noticed that.
when using an SLS as opposed to a wizard-mediated sys-
tem, subjects tended to hyperarticulate: releasing stops.
emphasizing initial word segments, pausing between words,
and increasing vocal effort.
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Although hyperarticulation is a muitifaceted behavior, it
was nevertheless possible to make global judgments about
individual utterances. Hyperarticulation was coded for each
utterance on a three-point scale by listening to the utter-
ances. Utterances were coded as (1) clearly natural sound-
ing, (2) strongly hyperarticulated, or (3} somewhat
hyperarticulated. The coding was done blindly without ref-
erernce to session context or system performance.

Using a within-subjects design, so that any differences in
recognition performance could be attributed to a change in
speech style, rather than speaker effects, we analyzed the
speech style of 24 subjects’ first scenarios (future analyses
will also examine repeat scenarios). These subjects (of
whom 20 were also included in the previous analysis of
user experience) all used the hardware system. The subjects
averaged about 10 natural sounding, 4 somewhat hyperar-
ticulate, and 5 strongly hyperarticulate utterances each. For
the 13 subjects who had at least three natural and three
strongly hyperarticulated utterances, we compared recogni-
tion performance within subjects and found that the
strongly hyperarticulate utterances resulted in higher word
error rates, F(1,12) = 5.19,p < .05.

Hyperarticulation was reduced. however, by giving users
instructions not to “overenunciate” and by explaining that
the system was trained on “normal” speech. We calculated a
hyperarticulation score for each subject by weighting
“strongly hyperarticulated” utterances as 1, “somewhat
hyperarticulated” utterances as 0.5, and “nonhyperarticu-
lated” utterances as O, and taking the mean weight across all
utterances in the scenario. The 12 subjects who heard the
instructions (the “instruction group”) had lower mean
hyperarticulation scores, 0.22 as compared with 0.60 for the
12 subjects who received no special instructions (the “no
Instruction group™), a significant difference F(1,22) = 11.97,
p<.0l.

Given that the instruction group had significantly fewer
hyperarticulated utterances, and given that hyperarticula-
tion is associated with lower recognition accuracy, we
would expect the instruction group to have better recogni-
tion performance overall. However, aithough the trend was
in that direction (18.1% word error for the instruction group
versus 22.5% for the no-instruction group), the difference
was not reliable. One possible explanation is a lack of
power in the analysis, as a result of the small number of
subjects and large individual differences in error rates. A
second, not necessarily conflicting explanation is that the
subjects given the instructions to “speak naturally” used
somewhat less planned and less formal speech. We noticed
that these subjects tended to have more spontaneous speech
effects, such as verbal deletions, word fragments, lengthen-
ings and filled pauses. Overall, spontanecus speech effects
occurred in 15% of the 232 utterances for the instruction
group, compared with 10% for the 229 utterances for the
no-instruction group. Although these baseline rates are low,
they may nevertheless have contributed to poorer recogni-
tion rates (see Butzberger et al. [2]). They may also be
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indicative of subtle speech style differences between the
two groups not captured by the coding of hyper. culation.

4. CONCLUSION

Application development can benefit from analyses of fac-
tors affecting system performance and user satisfaction. We
have presented examples of ways in which the behavior and
satisfaction of subjects interacting with an SLS may be
affected. We have described ways in which parameters of
the system itself, such as speed and accuracy, affect differ-
ent aspects of user satisfaction. We have examined the
effect of user experience on recognition performance and
found a decrease in word error rate over repeated scenarios.
Adaptation was relatively greater for those subjects who
had more than 20% errors on the first scenario. The
decrease in errors could be attributed at least in part to a
decrease in sentence perplexity and to a reduction in the use
of out-of-vocabulary words. We have also shown a signifi-
cant relationship between word error rates and hyperarticu-
lation, a speech style that occurs relatively frequently with
an imperfect recognizer. We have shown that instructions
not to hyperarticulate reduced this maladaptive speech
style, but that instructions did not result in improved recog-
nition performance overall.

Our studies have shown that along some dimensions.
humans are flexible and can adapt in ways that improve sys-
tem performance. However, hyperarticulation may be a
maladaptive behavior for which a technological solution
should be investigated. In particular we have found that
strategies people use to try to improve normal human com-
munication (e.g., hyperarticulation) can have the reverse
effect in the context of our current models. While hyperar-
ticulation is an “exaggerated” speech style that might
improve comprehension for humans, it can cause poor rec-
ognition for automatic systems in which “exaggeration” is
not adequately modeled.
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ABSTRACT

We attempt to explain a decrease in recognition word error
rate observed when users interacted over time with a spoken
language system, We found no change in the language used
(as measured by sentence perplexity), and only a small
decrease in the number of out-of-vocabulary words. However,
a behavior adversely affecting recognition, hyperarticulation,
decreased over time, In addition, the acoustic match of hyper-
articulated utterances to the system models also improved
over time. We conclude that improvement in recognition was
due to changes in speech rather than in language.

I. INTRODUCTION

Changes in the way users speak as they interact with a spo-
ken language system over time may have consequences for
recognition performance. Because humans are highly adap-
tive, initial recognition performance may not accurately pre-
dict later performance. System developers can benefit from
considering not only initial use of a system, but aiso experi-
ence of a user over time. In addition, speakers interacting with
a spoken language system may not exhibit the same language
behavior observed in training data. Eariier, we found that rec-
ognition errors decreased as subjects interacted with the sys-
tem over time {1]; the current paper more closely examines the
source of this error reduction by looking at both the language
and speech style of users.

Analyses were based on data collected using SRI's spoken
language system (SLS), as part of a multisite collection effort

[2] in which subjects solved air-travel planning scenarios. The

SRI SLS combines the DECIPHER™ recognizer [3] with a
robust natural-language understanding component {4], imple-
mented in the air-travel planning domain. The system does not
prompt the user for specific input; it simply accepts user-for-
mulated queries. For example, the user might ask, “Show me
flights from San Francisco to Philadelphia during the mom-
ing.” to which the system should respond by displaying a table
of flight information fitting those specifications.

In a previous paper [1] we reported that subject’s word
error rates decreased from Scenario 1 to Scenario 2. In that
analysis we attempled to explain the source of this decrease;
however, the addition of data in the current paper allows us to
explain the phenomenon in further detail. We examine two
potential causes for the decrease in error; changes in Janguage
and changes in speech style.

One possible explanation for the decrease in error is that
users were changing their language to use more constructions
of the types most easily recognized by the system. To test this
hypothesis, we compared the perplexity of sentences in Sce-
narios 1 and 2 for each subject. If perplexity (essentially a
measure of how unexpected a word sequence is given the sys-
temn models) decreased in Scenario 2, we could conclude that
subjects’ behavior changed in a way that adapted to the lan-
guage models of the system.

A second not contradictory hypothesis is that subjects were
changing their speech style over time to better match the sys-
temn’s acoustic models. We coded and measured one speech
style, hyperarticulation, which we had reason to believe would
lead to recognition errors. If hyperarticulation was related to
errors, and if the frequency of hyperarticulation decreased in
Scenario 2, we could conclude that subjects’ behavior
changed in a way that adapted to the acoustic models of the
system.

Il. METHOD
2.1. Subjects

We collected speech and session logs for two scenarios
from each of 24 subjects, counterbalancing for the selection
and order of the scenarios they solved. The majority of sub-
jects (17) were SRI employees recruited from an advertise-
ment in an internal newsletter; a small number were students
from a nearby university or members of a volunteer organiza-
tion. Subjects were native speakers of English, ranged in age
from 22 to 71, and had varying degrees of experience with
travel planning and computers.

2.2. Materials

Four different travel-planning scenarios were used. One
involved arranging flights to two cities in three days; a second
involved finding two fares for the price of a first class fare; a
third required coordinating the arrival times of three flights
from different cities; and a fourth invoived weighing factors
such as fares and meals in order to choose between two flight
times. Because the task demands of the scenarios were differ-
ent, we controlled for scenario in the analyses.

2.3. Apparatus

The data were collected using SRI's Spoken Language
System with no human in the loop. The basic characteristics of
the DECIPHER™ speech recognition component are
described in Murveit et al. [5,6], and the basic characteristics
of the natural language understanding component are
described in Jackson et al. {4]. The subjects used the real-time
hardware version of the DECIPHER™ system which had a
vocabulary size of 1,250 words {3,7].

SRI's SLS technology was implemented in the air travel
planning domain, with which many people are familiar (see
Price, [8]). The underlying database was a relational version
of an 11-city subset of the Official Airline Guide. Recognition
was based on the input of a Sennheiser HMD close-talking
microphone.

The interface presented the user with a screen showing a
button labeled “Click Here to Talk.” A mouse click in this box
caused the system to capture speech starting a 1/2 second
before the click; the system automatically determined when
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the speaker finished speaking based on silence duration set at a
threshold of 2 seconds. Once the speech was processed, the
screen displayed the words recognized, a “paraphrase” of the
system's understanding of the request, and, where appropriate,
a formatted table of data containing the answer to the query.
When the natural-language coiaponent could not arrive at a
reasonable answer, a message window appeared displaying
one of a small number of error messages. A log file was auto-
matically created, containing time stamps marking each action
by the user and by the system.

2.4. Procedure

Subjects were seated in a quiet room and were given a
short demonstration on how to use the system. Half of the sub-
jects were given additional instructions explaining that, while
they might have a tendency to enunciate more clearly in the
face of recognition errors, they should ry to speak naturally,
since the system was not trained on overenunciated or sepa-
rated speech. Once subjects were comfortabie with the system,
th =y were left alone in the room to solve the scenarios.

ifl. ADAPTATION

We compared Scenarios 1 and 2 for each subject to deter-
mine whether there were any changes in user behavior over
time. Although subjects were not told to solve the scenarios as
quickly as possible, they nevertheless took less time (10.5
compared to 13.0 minutes) to complete the second scenarios,
F(1,23) = 5.78, p < .05. This difference was partially attribut-
able to a lower number of total utterances in Scenario 2. In
addition, we found significantly lower recognition error rates
in subjects’ second scenario. The mean word error rate was
20.4% for Scenario 1, but fell 10 16.1% for Scenario 2,
F(1.22) = 5.60, p <.05.

3.1. Language

We first hypothesized that this change in error rates might
be due in part to adaptation to the language model of the rec-
ognizer. As a measure of deviation from the system’s bigram
language models, we used testset perplexity, which was based
on the bigram probabilities of the observed word sequences.
Perplexity measures the average likelihood (according to the
system’s models) that each word in a user’s query will be fol-

lowed by the next word, taking into account the base rate fre--

quencies of the words. So a commonly phrased query like “I'd
like to flv from San Francisco to Philadelphia™ would have a
low perplexity, since the system models would predict that
each word is quite likely to follow the word that precedes it.

We confirmed the relatonship between perplexity and
word error in our data; there was a significant, positive aver-
age correlation between utterance word error and utterance
perplexity, mean r = .28, t = 4.55, p < .001. Thus one way for
subjects to improve recognition accuracy would be to change
their language to conform to the language models of the sys-
tem. For example, subjects might alter their initial language to
use morc common, easily recognized word sequences and to
avoid rarer sequences that might tend to have more errors.
However, we did not find support for this hypothesis. Perplex-
ity decreased only slightly from 1 to 2 Scenario, with a geo-
metric mean of 17.7 and 16.9, respectively. The magnitude of
this difference was not significant given the variability both
within and across subjects; perplexity within a scenario ranged
from 8.8 to 38.9. The difference was nonsignificant by a Sign
test, p > .50.

In an attempt 1o find converging evidence that changes in
perplexity did not cause the decreased error rates, we obtained
recognition results for the same sound files using a software
version of the recogniz.r and two types of models. The bigram
models were essendally the same as the original models used
by the hardware, and were used as a conmol. The nogram
models used only acoustic and word ficquency information
for recognition; they did not reflect any information about
cross-word probabilities. Thus the recognition results from
nogram models would not be improved by any user adaptation
to the grammar of the original recognizer, whereas the results
from the bigram models would. If the bigram results showed a
greatc. decrease in word error than the nogram results, we
could conclude that some of the decrease was due to adapta-
tion to the language models. Figure 1 shows the word efror
recognition results from the two types of models. Both bigram
and nogram results show essentially the same decreasing
slope. This again suggests that adaptation to the language
models was not a major cause of improved recognition over
time.
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Fig. t - Bigram and nogram word error rates over time

We also exzmined whether the subjects tended to reduce
their use of out-of-vocabulary words in Scenario 2. Subjects
averaged 1.2 (less than 0.01%) out-of-vocabulary words in
Scenario 1, as compared with 0.5 (also less than 0.01%) in
Scenario 2. The number of these occurrences is so small as to
be trivial; furthermore, the trend is nonsignificant, F(1.21) =
1.74, p > .10. This suggests that the use of fewer out-of-vocab-
ulary words had little if any effect on overall recognition rates.

3.2. Speech Style

Having found no evidence for adaptation to the language
models, we concluded that recognition improvement must be
due to changes in user speech style. That is, as speakers
became more familiar with the system, they leamed to speak
in ways that better matched the acoustics of the training data.

In human-human interaction, when an addressee (such as a
foreigner) has difficulty understanding, speakers change their
speech style to enunciate more clearly than usual [9). We pre-
dicted that a similar effect might occur for people speaking to
a machine with less than perfect understanding. We noticed
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that, when using an SLS as opposed to a wizard-mediated sys-
tem [10], subjects tended to hyperarticulate: releasing stops,
emphasizing initial word segments, pausing berween words,
and increasing - ucal effort. Since most of the data used to
train the DECIPHER™ recognizer came from wizard-medi-
ated data collection, where recognition pericrmance was
nearly perfect, examples of “frustrated™ speech were rar:. For
this reason, we predicted that hyperarticulation would impair
recognition performance, and that perhaps the lower error
rates in Scenario 2 might be due to a decrease in the frequency
of hyperarticulation.

Although hyperarticulation is a multifaceted behavior, it
was nevertheless possible t¢ make global judgments about
individual utterances. Hyperirticulation was coded for each
utterance on a three-point scule by listening to the urterances.
Utterances were coded as (1) clearly natural-sounding,
(2) hyperarticulated in portions, or (3) hyperariculated
throughout the utterance. The coding was done blindly with-
out reference to session context or recognition outcome.

Using a within-subjects design, so that any differences in
recognition performance could be attributed to a change in
speech style, rather than speaker eff:cts, we analyzed the
speech style for Scenarios 1 and 2 of the same 24 subjects.
Because not enough speakers had utterances in all three cate-
gorics, we combined the hyperarticulation coding of two lev-
els for statistical purposes. For the 21 subjects who had both
qatural and hyperarticulate utterances, we compared recogni-
don performance within subjects and found that the hyperar-
ticulate utterances resulted in substantially higher word error
rates, 0.25 as compared with 0.1, F(1,20) = 15.68, p < .001.

Given that hyperarticuladon leads to more errors, it is pos-
sible that the overall decrease in error rates is due to a decrease
in tl.e rate of hyperarticuiation. In fact, the frequency of hyper-
artculated uiterances decreased from an average of 46% of
utteranc:s to 30% from 1 to Scenario 2, F(1,23) =497, p <
.05. The decrease was more pronounced for the completely
hyperarticulate utterances than for the partially hyperarticu-
late. As shown in Figure 2. users tended to use proportionally
fewer completely hyperarticulate utterances in Scenario 2.
Since this indicates a trend toward fewer hyperarticulated
words within utterances, this finding may also help explain the
decrease in error rate.

Converging evidence for the effect of frequency of hyper-
articulation on overall recognition rates came from the experi-
mental manipulation of instructions. Of our 24 subjects, 12
had been given instructions not to “overenunciate.” Under
these instructions, subjects hyperarticulated less, on 4.3 or
28.0% of all utterances as compared with 7.5 or 52.5%. This
effect was reliable, F(1,22) = 5.00, p < .05. Since hyperarticu-
lation rates decreased with instructions, we expected a compa-
rable decrease ir: crror rates. We compared word error rates for
the two instructon groups and found that the subjects who
received the instructions tended to have lower word =rror rates
overall 0.15, as compared with 0.20; however, this effect was
not significant. As Figure 3 shows, there was no interaction
between instructions and session; both the instruction and no-
instruction groups had similar decreases in word error rate
over ime. Figure 3 also ~hows the comparable ra‘es of hyper-
aruculation. As with error rate, there was no significant inter-
action between instructions 7.4 hyperarticulation rate. Thus a
decrease in hyperarticulation was associated with a decrease
in word error both when observed over time and when manip-
ulated by subject instructions. This finding suggests that a
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Fig. 2 - Frequency of hyperarticulate utterances over time

decrease in the rate of hyperarticulation may account for some
or much of the decrease in error over time.

In addition to frequency of hyperarticulation, it is possible
that the nature or degree of hyperarticulation may have
changed over time. If hyperarticulated utterances themselves
became more like the training data over time, this improved
match might also have contributed to the reduction in error
rate. Nonhyperarticulated utterances might also have become
more similar to the training data. We measured the acoustic
maich between the utterances and the training data by running
a forced alignment recognizer on the recorded sentences. Hid-
den Markov models associated with the sentence transcrip-
tions were aligned to the VQ sequence produced by each
sentence sound file. This procedure obtained the probability of
each sentence’s VQ sequence given the hidden Markov mod-
els it was aligned to.

Figure 4 shows log probabilities for hyperarniculated and
nonhyperarticulated utterances in both scenarios. While the
acoustic mawch for nonhyperariculated utterances did not
change over time, the match for hyperarticulated utterances
improved sharply from the Scenariol to Scenario 2. Because
few subiects had utterances in all four catege ‘es (both hyper-
articulated and nonhyperarticulated, in both scenarios), statis-
tical tests were inappropriate. However, we observe: a similar
imprcvement in acoustic match for hyperarticulated utterances
for both instruction groups, suggesting that the trend is not
random. Thus, an additional factor contributing to lower rec-
ognition error rates is a change in the acoustic nature of hyper-
articulated utterances over time

IV. CONCLUSICN

We found that recognition word error rates decreased as
users mteracted with the same SI S over time. We found that
this effect was due to changes in speech style rather than in
ada- - “‘on to the language models of the system. We conclude
th . changes in one speech style, hyperarticulation, affect rec-
ognidon rates in two ways. Users both decrease the rate of
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hyperartculation and alter the way in which they hyperartcu-
latc so as to better match the system’s acoustic models.
Together, these WO adaptations may account for the Improve-
ment in recognition rates observed as subjects use the system
over ame.
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